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Abstract

Schnorr randomness and computably randomness are natural concepts of ran-
dom sequences. However van Lambalgen’s Theorem fails for both randomnesses.
In this paper we define truth-table Schnorr randomness (defined in [6] too only by
martingales) and truth-table reducibly randomness, for which we prove that van
Lambalgen’s Theorem holds. We also show that the classes of truth-table Schnorr
random reals relative to a high set contain reals Turing equivalent to the high set.
It follows that each high Schnorr random real is half of a real for which van Lam-
balgen’s Theorem fails. Moreover we establish the coincidence between triviality
and lowness notions for truth-table Schnorr randomness.

1 Introduction
Martin-Löf randomness was a first concept that succeeded in defining a natural ran-
domness. However Schnorr criticized that randomness should be concerned with com-
putable strategies. Schnorr defined Schnorr randomness that we call now and com-
putably randomness.

Martin-Löf random sequences have many properties that we think “random” se-
quences should have. Van Lambalgen [25] proved van Lambalgen’s Theorem we
call now. This theorem says that intuitively any part of a Martin-Löf random se-
quence should not have any information of the other part. In [15], they proved that
Kolmogorov-Loveland randomness has a similar property . Hence van Lambalgen’s
theorem is a criterion for a proper random concept.

In contrast many properties about Schnorr randomness and computably random-
ness were proved like those about Martin-Löf randomness. However van Lambalgen’s
theorem fails for Schnorr randomness and computably randomness. See [15, 26] or
Kjos-Hanssen’s proof in [18]. Schnorr randomness or computably randomness seem
to be very natural concepts and the failure of their van Lambalgen’s theorem is unnatu-
ral. This suggests that Schnorr randomness and computably randomness have another
relativizations for which van Lambalgen’s Theorem holds.

There is another reason that we should consider another relativizations of Schnorr
randomness. One of the major achievement in the study of Martin-Löf randomness
is the discovery of the equivalence between triviality, lowness notions and the basis
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notion. However Schnorr trivial sets are not equal to the sets that are low for Schnorr
randomness [4]. Franklin and Stephan [6] defined truth-table Schnorr randomness by
martingales and proved that a set is Schnorr trivial iff it is tt-low for Schnorr random-
ness.

In section 3 we discuss the reason why we need another relativization of Schnorr
randomness.

In section 4 we define truth-table Schnorr randomness, which is another relativiza-
tion of Schnorr randomness. We show that truth-table Schnorr randomness can be
characterized by tests, machines and martingales similar to Schnorr randomness and
Martin-Löf randomness. We also show that van Lambalgen’s Theorem holds for truth-
table Schnorr randomness.

In section 5 we define truth-table reducibly randomness which is another relativiza-
tion of computably randomness. We show that van Lambalgen’s Theorem holds for
truth-table reducibly randomness.

In section 6 we study a difference between Schnorr randomness, truth-table Schnorr
randomness. We show that the classes of truth-table Schnorr random reals relative to
a high real contain a real Turing equivalent to the high real. It follows that each high
Schnorr random real is half of a real for which van Lambalgen’s Theorem fails.

In section 7 we define lowness for tt-reducible measure machine and proved that
tt-degree of a set is computably traceable iff it is low for tt-reducible measure machine.
Then it follows that a set is Schnorr trivial iff it is low for tt-reducible measure machine
iff it is low for tt-Schnorr randomness.

2 Preliminaries
Now we fix notations we use in this paper and recall some basic definitions and re-
sults. For a more complete introduction, see Soare [23] or Odifreddi [20, 21] for com-
putability theory and Li and Vitányi [13], Downey and Hirschfeldt [5] or Nies [18] for
algorithmic randomness.

2.1 Basics of Algorithmic randomness
We use 〈·, ·〉 to denote Cantor’s pairing function 〈x, y〉 = 1

2 (x+y)(x+y+1)+y. For a set
of natural numbers A, the set A′ = {e : ΦA

e (e)} is called the jump of A where ΦA
e is an

e-th partial computable function with A as an oracle. A set A is c.e. if A = {n : Φ(n) ↓}
for some Turing functionalΦ. Let K = φ′ = {e : Φe(e) ↓} and Ks = {e ≤ s : Φe,s(s)} a
approximation of K by steps. Note that K is a noncomputable c.e. set. We say that A is
T-reducible to B, write A ≤T B, if A = ΦB

e for some e. We also say that A is truth-table
reducible to B, write A ≤tt B, if there is a Turing functional Φe such that A = ΦB

e and
ΦZ

e is total for each oracle Z.
We can regard a set A as an infinite binary sequence such that i-th bit of the sequence

is 1 if i ∈ A and 0 if i < A. Let 2ω denote the set of all infinite binary sequences
and 2<ω the set of all finite binary strings. We also identify real numbers with their
inifinite binary expansion. Elements of Cantor space 2ω are sometimes called reals. For
σ ∈ 2<ω, |σ| denotes the length of σ. Let Dn be the effective listing of the finite subsets
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of ω satisfying the followings. Let D0 = φ. If n > 0 has the form 2x1 + 2x2 + · · · + 2xr

where x1 < · · · < xr, then let Dn = {x1, · · · , xr}. We say that n is a strong index for
Dn. We write σ ≺ τ to mean that σ is prefix of τ, that is (∃ρ)σρ = τ. Here τ can
be infinite. Let [σ] = {Z ∈ 2ω : σ ≺ Z} be the class of infinite binary sequences
extending σ. We use λ to denote the empty string. We say that a set A is a B-c.e. real if
A is the limit of a B-computable rational approximation. A function f : ω → R is c.e.
if f (n) are uniformly c.e. reals. A open set A is c.e. if the corresponding set of strings
{σ : [σ] ⊆ A} is a c.e. set.

A Martin-Löf test is a sequence of uniformly c.e. open sets {Un} such that µ(Un) ≤
2−n. A real A passes a Martin-Löf test Un if A <

∩
n Un. A real A is Martin-Löf random

or 1-random if A passes all Martin-Löf tests. We say that a Martin-Löf test {Un} is
universal if

∩
n Un contains

∩
m Vm for any Martin-Löf test {Vm}.

A set X is prefix-free if whenever σ, τ ∈ X, then σ is not a proper prefix of τ.
A partial function (or a machine) M : 2<ω → 2<ω is called a prefix-free machine
if dom(M) is prefix-free. There is a universal prefix-free machine, i.e., a prefix-free
machine U such that for each prefix-free machine M there is a string τ ∈ 2<ω for which
(∀σ)U(τσ) = M(σ) or both U(τσ) and M(τ) diverge. Then prefix-free Kolmogorov
complexity K of a string σ is defined as K(σ) = min{τ : U(τ) = σ}. Let ΩA

U =∑
σ 2−|σ| ~UA(σ) ↓�. This is called halting probability relative to A.

Lemma 2.1 (Kraft-Chaitin Theorem, see [5]). A Kraft-Chaitin set is a a computable
list of pairs of a natural number and a string (d0, τ0), (d1, τ1), · · · such that

∑
i<ω 2−di ≤

1. Then there is a partial computable machine N such that for a computable list {σi},
|σi| = di and N(σi) = τi for all i.

A martingale is a function M : 2<ω → R+ ∪ {0} that satisfies for every σ ∈ 2<ω the
average condition 2M(σ) = M(σ0) + M(σ1). A martingale M succeeds on a real A if
lim supn M(A � n) = ∞.

We can characterize Martin-Löf randomness by prefix-free Kolmogorov complex-
ity and c.e. martingales.

Theorem 2.2 (Schnorr [22], see [5] or [18]). The followings are equivalent.

(i) A real A is Martin-Löf random.

(ii) K(A � n) > n − O(1) for all n.

(iii) No c.e. martingale succeeds on a real A.

Martin-Löf randomness is a natural concepts of randomness. In particular the fol-
lowing theorem holds for Martin-Löf randomness.

Theorem 2.3 (van Lambalgen [25]). X ⊕ Y is Martin-Löf random iff X is Martin-Löf
random and Y is Martin-Löf random.

Intuitively this theorem says any part of a random sequence should not have any
information of the other part.
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2.2 Schnorr randomness
Definition 2.4. We call {Un} a Schnorr test if it is a Martin-Löf test and {µ(Un)} is
uniformly computable. A real A passes a Schnorr test Un if A <

∩
n Un. A real A is

Schnorr random if A passes all Schnorr tests.

The followings are known results about Schnorr randomness.

Theorem 2.5 (Schnorr [22]). For each Schnorr test {Un}, one may effectively find a
Schnorr test {Vn} such that (∀n)Un ⊆ Vn and (∀n)µ(Vn) = 2−n.

Theorem 2.6 (Schnorr [22]). There is no universal Schnorr test.

As Martin-Löf randomness has characterizations by machines and martingales 2.2,
Schnorr randomness also has similar characterizations.

Definition 2.7 (Downey and Griffiths [3]). A prefix-free machine M is a computable
measure machine if ΩM is computable.

Theorem 2.8 (Downey and Griffiths [3]). The following are equivalent.

(i) A set A is Schnorr random.

(ii) For all computable measure machine M, (∃c)(∀n)KM(A � n) > n − c.

It is clear by the proof that we can effectively construct a computable measure
machine by a Schnorr test and vice versa.

Theorem 2.9 (Franklin and Stephan [6], after Schnorr [22]). The followings are equiv-
alent for a set A.

(i) A set A is not Schnorr random.

(ii) There is a computable martingale F strongly succeeds on A: i.e., there is a
computable unbounded nondecreasing function h : N→ N such that F(A � n) ≥
h(n) infinitely often.

(iii) For each computable function r there is a computable martingale G and a strictly
increasing computable function f such that G(A � f (n)) ≥ r(n) infinitely often.

Again the effectiveness of the construction is clear by the proof.
In contrast with Martin-Löf randomness, [15, 26] proved that van Lambalgen’s

Theorem fails for Schnorr randomness. Here we cite the following result whose proof
is in [18].

Theorem 2.10 (Kjos-Hanssen, see [18]). Van Lambalgen’s Theorem fails for Schnorr
randomness. In particular there exists a Schnorr random set A = A0 ⊕ A1 such that
A0 ≡T A1.

On the other hand the other direction holds.

Theorem 2.11 (Yu [26]). If A is Schnorr random and B is A-Schnorr random then
A ⊕ B is Schnorr random.
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2.3 Computably randomness
We say that a real is computably random if no computable martingale succeeds on it.

Definition 2.12 (Merkle, Mihailovic, and Slaman [16]). A computable rational prob-
ability distribution (or measure) is a computable function ν : 2<ω → Q, with ν(λ) = 1
and ν(σ) = ν(σ0) + ν(σ1). A bounded Martin-Löf test is a Martin-Löf test for which
there exists a computable rational probability distribution ν with

µ(Vn ∩ [σ]) ≤ ν(σ)
2n ,

for all n ∈ N and σ ∈ 2<ω.

Definition 2.13 (Downey, Griffiths, and LaForte [4]). A Martin-Löf test {Vn} is com-
putably graded if there exists a computable map f : 2<ω × ω → Q such that, for any
n ∈ ω, σ ∈ 2<ω, and any finite prefix-free set of strings {σi}i≤I with

∪I
i=0[σi] ⊆ [τ], the

following conditions are satisfied:

(i) µ(Vn ∩ [σ]) ≤ f (σ, n),

(ii)
∑I

i=0 f (σi, n) ≤ 2−n,

(iii)
∑I

i=0 f (σi, n) ≤ f (τ, n).

We say that a real A withstands a computably graded test {Vn} iff A <
∩

n Vn.

Theorem 2.14 (Merkle, Mihailovic, and Slaman [16], Downey, Griffiths, and LaForte
[4]). A real is computably random iff it withstands all bounded Martin-Löf tests (iff it
withstands all computably graded tests).

Theorem 2.15 (Merkle, Miller, Nies, Reimann, and Stephan [15]). Van Lambalgen’s
Theorem fails for computably randomness. In particular there exist A, B such that A⊕B
is computable random but A is not B-computable random.

Similarly to the case of Schnorr randomness, the other direction holds.

Theorem 2.16 (Yu [26]). If A is computably random and B is A-computably random
then A ⊕ B is computably random.

2.4 Trivial sets and lowness notions
A set A is K-trivial if there is c ∈ N such that

(∀n)K(A � n) ≤ K(n) + c.

This class was introduced by Chaitin [1] and further studied by Solovay (unpublished).
A set A is low for Martin-Löf randomness if each Martin-Löf random set is already

Martin-Löf random relative to A: i.e.,

MLRA = MLR.
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This class was defined in Zambella [27], and studied by Kučera and Terwijn [12].
A set A is low for K if

(∀n)K(n) ≤ KA(n) + c.

This class was introduced by Andrej A. Muchnik in 1999, who proved that there is a
c.e. noncomputable set in this class.

A set A is a basis for Martin-Löf randomness if

A ≤T Z for some Z ∈ MLRA.

This class was introduced by Kučera [11]. Kučera proved that this class is different
from the class of computable reals: i.e., there is a c.e. non-computable set A that is a
basis for Martin-Löf randomness.

Actually these four classes are equal.

Theorem 2.17 (A. Nies [17], Hirschfeldt, Nies and Stephan [9]). The following state-
ments about a set A are equivalent.

(i) A set A is K-trivial.

(ii) A set A is low for Martin-Löf randomness.

(iii) A set A is low for K.

(iv) A set A is a basis for Martin-Löf randomness.

These studies were also carried out for Schnorr randomness. We say that a set A is
computably traceable if there is a computable function h(x) such that for all functions
g ≤T A, there is a computable collection of canonical finite sets Dr(x) with |Dr(x)| ≤ h(x)
and such that g(x) ∈ Dr(x). A set A is low for Schnorr randomness if each Schnorr
random set is already Schnorr random relative to A.

Theorem 2.18 (Kjos-Hanssen, Nies and Stephan [10]). A set A is low for Schnorr
randomness iff A is computably traceable.

A set A is low for computable measure machines if for each computable mea-
sure machine M relative to A, there is a computable measure machine N such that
(∃c)(∀n)KA

M(n) ≥ KN(n) − c.

Theorem 2.19 (Downey, Greenberg, Mikhailovich and Nies [2]). A set A is low for
computable measure machines iff A is computably traceable.

A set A is Schnorr trivial if for every computable measure machine N there is a
computable measure machine M such that (∃c)(∀n)KM(A � n) ≤ KN(n) + c. Downey,
Griffiths and LaForte [4] showed that this class does not coincide with the reals that are
low for Schnorr randomness.

Theorem 2.20 (Downey, Griffiths and LaForte [4]). There is a c.e. complete Schnorr
trivial real.
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Franklin and Stephan [6] defined truth-table Schnorr randomness which is more
suitable for a notion of relativized Schnorr randomness in the context of truth-table
reducibility. A set R is truth-table Schnorr random relative to A if there is no martingale
d ≤tt A and no computable bound function b such that (∃∞n)d(R � b(n)) ≥ n. A set A
is low for tt-Schnorr randomness if every Schnorr random set R is truth-table Schnorr
random relative to A.

Theorem 2.21 (Franklin and Stephan [6]). A set A is Schnorr trivial iff A is truth-table
low for Schnorr randomness.

Moreover they obtain a theorem similar to those involving bases for randomness,
although the reducibility is not a commonly accepted one. We say that A ≤snr B if

(∃ computable h)(∀ f ≤t tA)(∃g ≤t tB)(∀n)(∃m ≤ h(n)) f (n) = g(m).

Theorem 2.22 (Franklin and Stephan [6]). A set A is Schnorr trivial iff there is a set B
such that B is truth-table Schnorr random relative to A and A ≤snr B.

3 Motivation
In this section we shall states formally why another relativizations of Schnorr random-
ness is necessary and investigate the reason that van Lambalgen’s Theorem fails for
Schnorr randomness.

Schnorr randomness has many properties natural as a random concept like Theo-
rem 2.5, 2.6, 2.8 and 2.9. Moreover one direction of van Lambalgen’s Theorem holds
for Schnorr randomness. However the other direction does not. This means that rela-
tivization of Schnorr randomness is not proper.

For each sequence A, let Sch(A) be a set of A-Schnorr random sequences. We can
regard Sch as a function from 2ω to P(2ω) where P(S ) denotes the power set of S .
Generally a random concept induces a function S : 2ω → P(2ω). Hence we identify a
random concept with its induced function. We say that S is another relativization of T
if S (φ) = T (φ). Note that S (A) may not equal to T (A) for some A ∈ 2ω. We say that
van Lambalgen’s Theorem holds for S if A ⊕ B ∈ S (φ) ⇐⇒ A ∈ S (φ) & B ∈ S (A).

Let C ∈ P(2ω) be a class of reals. Suppose that S (φ) = C and van Lambalgen’s
Theorem holds for S . Then A ⊕ B ∈ C ⇐⇒ A ∈ C & B ∈ S (A). It follows that
S (A) = {B : A⊕ B ∈ C} for A ∈ C. Hence S (A) is unique when A ∈ C. Suppose that S
is another relativization of Schnorr randomness for which van Lambalgen’s Theorem
holds. Then S (A) is unique when A ∈ Sch(φ). This S is proper relativization of Schnorr
randomness. Then another relativization of Schnorr randomness is necessary. In the
next section we propose such a random concept.

To find this proper relativization of Schnorr randomness, recall the proof of van
Lambalgen’s Theorem. Here, we look at the one direction that fails for Schnorr ran-
domness.

Theorem 3.1 (van Lambalgen [25]). If A⊕B is Martin-Löf random then B is A-Martin-
Löf random.
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Proof. This proof is in [5]. Suppose B is not A-Martin-Löf random. We have B ∈∩
n VA

n where VA
n is A-Martin-Löf test and µ(VA

n ) ≤ 2−n. Put

Wn = {X ⊕ Y : X ∈ 2ω,Y ∈ ṼX
n }

where ṼX
n is VX

n enumerated so long as its measure is less than 2−n. Note that Wn

is Martin-Löf test. Moreover ṼA
n = VA

n , hence A ⊕ B ∈ ∩
n Wn, contradicting the

assumption that A ⊕ B is Martin-Löf random. �

This essentially says that the Martin-Löf test Wn is emulate X-Martin-Löf tests VX
n

for all X ∈ 2ω. This can not be adapted to Schnorr randomness. Even if µ(VA
n ) is A-

computable uniformly in n, µ(VX
n ) may not be X-computable in n for some X ∈ 2ω. So

we put the restriction that µ(VX
n ) must be X-computable uniformly in n for all X ∈ 2ω.

Then a Schnorr test can emulate {VX
n } for all X. This also means that we do not allow

the test {VA
n } such that µ(VA

n ) happens to be A-computable in n. Then {VX
n } can be

computed by the same Turing machine with an oracle X. Hence we should say that this
restriction is by machines and not by computability. Moreover this restriction coincides
that of Schnorr tests if X = φ.

4 Truth-table Schnorr randomness
In this section we define truth-table Schnorr randomness which is another relativization
of Schnorr randomness. This is mainly because van Lambalgen’s Theorem holds for
this relativization. Our first definition is by test concept but later we found it equivalent
to that in [6] in Theorem 4.18.

We restrict Schnorr tests so that for each test {Vn}, µ(VX
n ) is computable from X

for each X. This enables us to emulate VX
n for all X. Then the machines that we

can use to calculate µ(VX
n ) are the same for all X. This is different from the usual

relativization of Schnorr randomness, where we allow a Schnorr test {VX
n } that happens

to be computable from X. Actually this restriction is the same as that by computable
steps.

Now we extend truth-table reduction to allow sequences.

Definition 4.1. A sequence of Turing functional {Φn} is a uniform truth-table reduction
if ΦZ

n is uniform in n and total for each oracle Z.

From a different point of view, this restriction is by steps bounded by computable
function.

Proposition 4.2 (see [18]). For sequences A and B, A ≤tt B iff there is a Turing func-
tional Φ and a computable function t such that A = ΦB and the number of steps needed
to compute ΦB(n) is bounded by t(n).

Then for a uniform tt-reduction {Φn}, the number of steps needed to computeΦZ
n (m)

is bounded by a computable function t(n,m) for all Z.
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4.1 Truth-table Schnorr test
We shall give a precise definition of truth-table Schnorr randomness. As we will see
later, truth-table Schnorr randomness is the same as Schnorr randomness when it does
not use an oracle. Hence we define X-truth-table Schnorr randomness for each X.

TT-Schnorr randomness is defined by replacing uniformly computable in the defini-
tion of Schnorr randomness by uniformly truth-table reducible. Compare the following
definition with Definition 2.4.

Definition 4.3. Let X be a real. We call {UX
n } a truth-table Schnorr test relative to X

or a X-tt-Schnorr test if

(i) {UZ
n } is a Z-Martin-Löf test for all Z,

(ii) there exsits a uniform tt-reduction Φn such that µ(UZ
n ) = ΦZ

n for all Z.

We call a real A truth-table Schnorr random relative to X or X-tt-Schnorr random if A
passes all X-truth-table Schnorr tests.

Intuitively the X-truth-table Schnorr test is a X-Martin-Löf test whose measure is
computable from X and its step is bounded by a computable function.

Let TTS(X) be a set of truth-table Schnorr random sequences relative to X. We say
that A is truth-table Schnorr random if A is φ-truth-table Schnorr random equivalently
if A ∈ TTS(φ).

We can easily see that A is truth-table Schnorr random iff A is Schnorr random.

Proposition 4.4. Let A be a binary sequence. Then A is truth-table Schnorr random iff
A is Schnorr random: i.e., TTS(φ) = Sch(φ).

Proof. Let {Un} be a φ-tt-Schnorr test. Then µ(UZ
n ) = ΦZ

n for some {Φn}. Hence µ(Un)
is uniformly computable. It follows that {Un} is a Schnorr test. Conversely, a Schnorr
test is a φ-tt-Schnorr test by the same way. �

Hence truth-table Schnorr randomness is another relativization of Schnorr random-
ness.

The expression “truth-table Schnorr random” is slightly confusing. As mentioned
above, A is truth-table Schnorr random iff A is Schnorr random, which means that
TTS(φ) = Sch(φ). At the same time we will see in Corollary 4.11 that truth-table
Schnorr randomness is not equal to Schnorr randomness, which means that TTS , Sch
as a function. However this expression is convenient.

Here we see an immediate implication of the definition of Schnorr randomness and
tt-Schnorr randomness.

Proposition 4.5. For each real X, a real is X-Schnorr random implies that it is X-
truth-table Schnorr random: i.e., Sch(X) ⊆ TTS(X).

Proof. Let {UX
n } be a X-tt-Schnorr test. Then µ(UX

n ) is X-computable uniformly in n.
Hence {UX

n } is a X-Schnorr test. �
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We know that Schnorr tests can be defined by that the measure of n-th open set
equals 2−n by Theorem 2.5. Similarly we can replace µ(UZ

n ) = ΦZ
n for all Z in the

definition of tt-Schnorr test with µ(VZ
n ) = 2−n for all Z and n.

Proposition 4.6. For each tt-Schnorr test Un there exists a tt-Schnorr test Vn such that∩
n Un ⊆

∩
n Vn and µ(VZ

n ) = 2−n for all Z.

Proof. Since µ(UZ
n ) is computable from Z, we can effectively find n such that µ(UZ

n ) ≤
2−n and construct Vn by adding some extra open sets. �

So we can assume that each X-tt-Schnorr test {UX
n } satisfies µ(UZ

n ) = 2−n for all Z.
Here we give an example of difference between tt-Schnorr randomness and Schnorr

randomness by changing the relativization. Note that A ≤T X implies that A is not X-
Schnorr random because {[A � n]} is a X-Schnorr test which A passes. In contrast
A ≤T X does not imply that A is not X-tt-Schnorr random as we will see in Corollary
4.12. We can prove the following as a correspondence.

Proposition 4.7. If A ≤tt X then A is not X-truth-table Schnorr random.

Proof. For a truth-table reduction Φ of A to X, let Un = [ΦX � n]. Then {Un} is a
X-tt-Schnorr test and A passes this test. �

As there is no universal Schnorr test, neither is a universal truth-table Schnorr test.
Before the proof we prepare the following lemmas.

Lemma 4.8. Let {UZ} be the complements of open sets uniformly Z-c.e. for Z ∈ 2ω. If
µ(UZ) is uniformly computable in Z, then there exists a Turing functional Φ f such that
ΦZ

f ∈ UZ for each Z ∈ 2ω.

Proof. For each Z ∈ 2ω, we construct a sequence of strings {σZ
n } such that σZ

n ≺ σZ
n+1

and µ(UZ ∩ [σZ
n ]) > 0 for all n ∈ ω. Then let ΦZ

f = limn σ
Z
n . Note that it follows that

ΦZ
f ∈ UZ .

At stage n = 0, let σZ
0 = φ.

At stage n + 1, suppose that σZ
n is defined such that µ(UZ ∩ [σZ

n ]) > 0. Since
{UZ} is the complements of open sets uniformly Z-c.e., there exists approximations UZ

s
such that UZ

s+1 ⊆ UZ
s and lims UZ

s = UZ . For each m there exists s = s(Z) such that
µ(UZ

s )−µ(UZ) ≤ 2−m uniformly in Z. Then µ(UZ
s ∩ [σZ])−µ(UZ ∩ [σZ]) ≤ 2−m. Hence

µ(UZ ∩ [σZ]) is uniformly computable in Z and σ ∈ 2<ω. If µ(UZ ∩ [σZ
n 0]) > 0 then

let σn+1 = σ
Z
n 0. If µ(UZ ∩ [σZ

n 0]) = 0 then µ(UZ ∩ [σZ
n 1]) = µ(UZ ∩ [σZ

n ]) > 0 and let
σn+1 = σ

Z
n 1. This is end of the construction. �

Proposition 4.9. For each X there is no universal X-truth-table Schnorr test.

Proof. Let {UX
n } be a X-tt-Schnorr test. Then there is {VZ

n } such that {VZ
n } is a Z-tt-

Schnorr test uniformly in Z and VX
n = UX

n for all n. Now µ(VZ
1 ) ≤ 1/2. Since VZ

1 is a
open set uniformly in Z and µ(VZ

1 ) is uniformly computable in Z, there exists a Turing
functional Φ f such that ΦZ

f is in the complement of VZ
1 for each Z ∈ 2ω by Lemma

4.8. Then ΦX
f <

∩
n VX

n =
∩

n UX
n . However {[ΦX

f � m]} is a X-tt-Schnorr test and
ΦX

f ∈
∩

m[ΦX
f � m]. It follows that

∩
n UX

n does not contain
∩

m[ΦX
f � m]. Hence {UX

n }
is not universal. �
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4.2 Van Lambalgen’s Theorem holds for truth-table Schnorr ran-
domness

We will see later that truth-table Schnorr randomness has many good properties as
Schnorr randomness does. In this subsection we prove that van Lambalgen’s Theorem
holds for truth-table Schnorr randomness.

As mentioned Theorem 2.10 and 2.11, the only one direction of van Lambalgen’s
Theorem holds for Schnorr randomness. This is because that van Lambalgen’s The-
orem holds for truth-table Schnorr randomness and that Schnorr randomness implies
truth-table Schnorr randomness.

Theorem 4.10. Van Lambalgen’s Theorem holds for truth-table Schnorr randomness.

The proof is almost straightforward modification of the proof of van Lambalgen’s
Theorem for Martin-Löf randomness.

Proof. First we shall prove that if A ⊕ B is tt-Schnorr random, then B is A-tt-Schnorr
random. Suppose B ∈ ∩

n UA
n for some tt-Schnorr test Un. We can assume µ(UZ

n ) = 2−n

for all Z. Let Vn = {X ⊕ Y | X ∈ 2ω and Y ∈ UX
n }. Then µ(Vn) =

∫
UX

n dX = 2−n and Vn

is c.e. and open uniformly in n. Hence Vn is a tt-Schnorr test. Moreover A⊕B ∈ ∩
n Vn.

This is a contradiction to the fact that A ⊕ B is tt-Schnorr random.
Next we shall prove that if A is tt-Schnorr random and B is A-tt-Schnorr random

then A⊕ B is tt-Schnorr random. Suppose A⊕ B is not tt-Schnorr random. Since A⊕ B
is not Schnorr random, there exists a Schnorr test {Un} such that A ⊕ B ∈ ∩

n Un and
µ(Un) = 2−n. By passing to a subsequence we may assume that µ(Un) = 2−2n−1. Let

VX
n = {Y | X ⊕ Y ∈ Un}.

We claim that µ(VX
n ) is computable from X uniformly in n. Fix n. For each m there

exists a computable function g such that µ(Un) − µ(Un[g(m)]) < 2−m. Then µ(VX
n ) −

µ(VX
n [g(m)]) = µ({Y | X ⊕ Y ∈ Un − Un[g(m)]}) < 2−m. Hence {µ(VX

n )} is uniformly
computable from X. Then by letting ṼX

n be VX
n as long as its measure is ≤ 2−n, we get

a X-tt-Schnorr test ṼX
n .

Let
Wn = {X | µ(ṼX

n ) ≥ 2−n}
and

W̃n = {X | µ(ṼX
n [g(n + 1)]) ≥ 2−n−1}.

Since µ(ṼX
n ) − µ(ṼX

n [g(n + 1)]) < 2−n−1, Wn ⊆ W̃n. Note that µ(W̃n) ≤ 2−n for all
n, otherwise we would have µ(Un) ≥ µ(Wn)2−n−1 > 2−2n−1 a contradiction. Since
ṼX

n [g(n + 1)] can be computed from X in a finite step, X is used only at a finite initial
segment. Hence µ(W̃n) is computable. It follows that W̃n is a Schnorr test.

Since A is Schnorr random, there exists N such that µ(ṼA
n ) ≤ 2−n for all n ≥ N.

Hence VA
n = ṼA

n for all n ≥ N. Since A ⊕ B ∈ ∩
n Un, B ∈ VA

n = {Y | A ⊕ Y ∈ Un} for
each n. It follows that B ∈ ∩

n ṼA
n for all n ≥ N. Since B is A-tt-Schnorr random and

Ṽn is a tt-Schnorr test, this is a contradiction.
�
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This shows that truth-table Schnorr randomness is different from Schnorr random-
ness.

Corollary 4.11. There exists X such that X-truth-table Schnorr random does not imply
X-Schnorr random.

Moreover by combining with Proposition 2.10, it follows that A ≤T X does not
imply that A is not X-truth-table Schnorr random.

Corollary 4.12. There exist reals A, B such that A ≡T B and A is B-truth-table Schnorr
random.

Proof. There exists a Schnorr random set C = A ⊕ B such that A ≡T B by Proposition
2.10. Note that C is tt-Schnorr random by Proposition 4.5. Hence A is B-tt-Schnorr
random by Theorem 4.10. �

We shall explore more the difference between Schnorr randomness and truth-table
Schnorr randomness in Section 7.

4.3 Truth-table reducible measure machine
Next we shall prove that truth-table Schnorr randomness has good properties that
Schnorr randomness has. Schnorr randomness has characterization by machines by
Theorem 2.8. We shall prove that these characterizations also have similar relativiza-
tions.

Definition 4.13. A prefix-free machine M is a truth-table reducible measure machine
if there is a Turing functional Φ such that ΩZ

M = Φ
Z for all Z.

Theorem 4.14. The following are equivalent.

(i) A is X-truth-table Schnorr random.

(ii) For all truth-table reducible measure machine M, (∃c)(∀n)KX
M(A � n) > n − c.

It is enough to prove the following lemma.

Lemma 4.15. Let RZ
M,n = {σ | KZ

M(σ) ≤ |σ| − n}.

(i) For a truth-table reducible measure machine M, {RM,n} is a truth-table Schnorr
test.

(ii) For a truth-table Schnorr test {Un}, we can effectively obtain a truth-table re-
ducible measure machine M such that

∩
n UZ

n ⊆
∩

n RZ
M,n for all Z.

Proof. The proof is the almost same as that of Schnorr random. The following proof
is based on [18].
(i) It is well-known that {RZ

M,n} is a Martin-Löf test relative to Z. Note that ΩZ
M −ΩZ

M,s ≥
2n(µ(RZ

M,n) − µ(RZ
M,n,s)) for each Z and s. Since ΩZ

M is computable uniformly in Z, this
shows that µ(RZ

M,n) is computable uniformly in n and Z.

12



(ii) We can assume that µ(UZ
n ) = 2−2n for all Z and n. Since the following construction

is effective, we abbreviate Z. Represent each Un as a union of extensions [σn,i] of a
prefix-free set {σn,i} such that g(〈n, i〉) = σn,i is a computable function from ω to 2<ω.

Let L = {〈|σn,i| − n + 1, σn,i〉}. Then∑
n,i

2−(|σn,i |−n+1) =
∑

n

2n−1
∑

i

2−|σn,i | =
∑

n

2−n−1 = 1.

Since L is a bounded request set, by Kraft-Chaitin theorem there is a prefix-free ma-
chine M such that KM(σn,i) ≤ |σn,i| − n + 1 for all n, i. Moreover ΩM = weight(L) =
1. �

4.4 Truth-table reducible martingale
Next we give a characterization by martingales. Recall the characterization of Schnorr
randomness by martingales by Theorem 2.9.

Definition 4.16. FX is a X-truth-table reducible martingale if FZ is a martingale for
all Z and there exists a uniform tt-reduction Φσ such that FZ(σ) = ΦZ

σ for all Z and σ.

Definition 4.17. X-truth-table reducible martingale F strongly succeeds on a real A if
there is a computable unbounded nondecreasing function h such that F(A � n) ≥ h(n)
infinitely often. We say that F h-succeeds for the particular computable order h.

Theorem 4.18. The followings are equivalent.

(i) A real A is not truth-table Schnorr random relative to X.

(ii) There is a X-truth-table reducible martingale strongly succeeds on A.

(iii) There is a X-truth-table reducible martingale F and a strictly increasing com-
putable function f such that G(A � f (n)) ≥ n infinitely often.

(iv) For each computable function r there is a X-truth-table reducible martingale F
and a strictly increasing computable function f such that G(A � f (n)) ≥ r(n)
infinitely often.

The third statement is the definition by Franklin and Stephan [6], so their definition
is equivalent to ours.

Proof. This is immediate from 2.9.
The direction (iv)⇒(iii) is obvious.
For (iii)⇒(ii), let h(n) = max{l : f (l) ≤ n}, then G h-succeeds on A.
For (ii)⇒(i), suppose that a X-tt-reducible martingale G succeeds on A. By effec-

tiveness of Theorem 2.9 one obtains X-tt-Schnorr test such that A does not pass.
For (i)⇒(iv), suppose that there is a X-tt-Schnorr test {Un} such that A ∈ ∩

n Un. By
Theorem 2.9 for a computable function r there is a X-tt-reducible martingale GX and a
strictly increasing X-computable function f X such that GX(A � f X(n)) ≥ r(n) infinitely
often. Let f (n) = min{ f X(n) : X ∈ 2ω} then f is a a strictly increasing computable
function. Moreover GX(A � f (n)) ≥ r(n) infinitely often. �
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5 Truth-table reducibly randomness
In this section we define truth-table reducibly randomness which is another relativiza-
tion of computably randomness. Motivation is the same as truth-table Schnorr random-
ness.

Definition 5.1. A real is truth-table reducibly random relative to X or X-tt-reducibly
random if no X-tt-reducible martingale succeeds on it.

The following implication is immediate by Theorem 4.18.

Proposition 5.2. For all X, X-Martin-Löf randomness implies X-tt-reducible random-
ness implies X-tt-Schnorr randomness.

5.1 Characterization by test concept
To prove that van Lambalgen’s Theorem holds for truth-table reducibly randomness,
we shall characterize truth-table reducibly randomness by a test concept. Recall the
characterization of Schnorr randomness by test concept by Theorem 2.14.

Definition 5.3. A X-Martin-Löf test {Vn} is X-tt-reducibly graded if there exists a truth-
table reduction f : 2<ω × ω → Q such that, for any Z ∈ 2ω, n ∈ ω, σ ∈ 2<ω, and any
finite prefix-free set of strings {σi}i≤I with

∪I
i=0[σi] ⊆ [τ], the following conditions are

satisfied:

(i) µ(Vn ∩ [σ]) ≤ f Z(σ, n),

(ii)
∑I

i=0 f Z(σi, n) ≤ 2−n,

(iii)
∑I

i=0 f Z(σi, n) ≤ f (τ, n).

We say that a real A withstands a X-tt-reducibly graded test {Vn} iff A <
∩

n Vn.
For the characterization of truth-table reducibly randomness by a test concept, we

use the following theorem Downey, Griffiths, and Laforte showed in [4].

Theorem 5.4. (i) From a computable martingale G : 2<ω → Q we can effec-
tively define a computably graded test (Vn, f ) such that for every real A, if
lim sup j G(A � j) = ∞, then A ∈ ∩

n Vn.

(ii) From a computably graded test (Vn, f ) we can effectively define a computable
martingale G : 2<ω → Q such that for every real A, if A ∈ ∩

n Vn, then
lim sup j G(A � j) = ∞.

Then we can show another relativized version.

Theorem 5.5. A real A is X-reducibly random iff it withstands all X-tt-reducibly
graded Martin-Löf tests.

14



Proof. Suppose that a X-tt-reducible martingale G succeeds on a real A. By the effec-
tiveness of Theorem 5.4(i) we can define a X-tt-reducibly graded test (Vn, f X) such that
A ∈ ∩

n Vn. Then A does not withstand X-tt-reducibly graded test Vn.
On the other hand suppose that A ∈ ∩

n Vn for a real A and a X-tt-reducibly graded
test (Vn, f X). Again by the effectiveness of Theorem 5.4(ii) we can define a X-tt-
reducible martingale G : 2<ω → Q such that lim sup j G(A � j) = ∞. Then G succeeds
on A. �

Remark 5.6. Mihailović gave a machine characterization of computably randomness
(see [5]). Although we have not checked yet, it is likely that we can also make a machine
characterization of tt-reducibly randomness straightforwardly.

5.2 Van Lambalgen’s Theorem holds for truth-table reducibly ran-
domness

In this subsection we prove that van Lambalgen’s Theorem holds for tt-reducibly ran-
domness. Recall the situation of computably randomness at Theorem 2.15 and 2.16. In
contrast we can prove that van Lambalgen’s Theorem holds for tt-reducibly random-
ness. First we give definitions and a lemma.

Definition 5.7. For a tt-reducible rational probability distribution ν, we define σ-
approximation νσ(τ) as

νσ(τ) = µ({X ⊕ Y | X ∈ [σ],Y ≤ νX(τ)}).

Lemma 5.8. For each σ, νσ is a computable probability distribution.

Proof. First we shall prove that that νσ is a probability distribution.

νσ(τ) =µ({X ⊕ Y | X ∈ [σ],Y ≤ νX(τ)})
=µ({X ⊕ Y | X ∈ [σ0],Y ≤ νX(τ)}) + µ({X ⊕ Y | X ∈ [σ1],Y ≤ νX(τ)})
=νσ(τ0) + νσ(τ1).

Then νσ is a probability distribution.
Next we shall prove that νσ is computable. Since ν is a truth-table reduction, one

can compute s such that |νZ(τ) − νZ�ss (τ)| ≤ 2−m uniformly in Z, τ and m. Let Tm(τ) be
the set of strings η such that |νZ(τ)− νη(τ)| > 2−m for some η ≺ Z ∈ 2ω. Note that Tm(τ)
is a tree for each m and τ. If Tm(τ) is not finite, then it has an infinite path Z by König’s
Lemma and |νZ(τ) − νZ�ss (τ)| > 2−m for each s which is a contradiction. Then Tm(τ) is
finite.

Given τ and m, one can compute a strong index g̃(τ,m) for the finite set of strings
η (under the prefix relation) such that |νZ(τ) − νZ�ss (τ)| ≤ 2−m Hence one can compute
a strong index g(τ,m) for the set of strings η such that |νZ(τ) − νη|η|(τ)| ≤ 2−m for each
η ≺ Z. Then ∑

η∈Dg(τ,m)

2−|η| = 1

15



and
η ∈ Dg(τ,m) ⇒ |νZ(τ) − νη(τ)| ≤ 2−m

for all η ≺ Z.
Pick a real Zη for each η such that η ≺ Zη. Then

|νσ(τ) −
∑

η∈Dg(τ,m)∩[σ]

νZη(τ)2−|η||

=
∑

η∈Dg(τ,m)∩[σ]

|µ({X ⊕ Y | X ∈ [η],Y ≤ νX(τ)}) − νZη(τ)2−|η||

≤
∑

η∈Dg(τ,m)∩[σ]

2−m−|η|

=2−m.

Since
∑
η∈Dg(τ,m)∩[σ] ν

Zη(τ)2−|η| is computable, νσ(τ) is also computable. �

Definition 5.9. For strings σ and τ, σ ⊕ τ denotes a partial string η such that η(2i) =
σ(i) and η(2i + 1) = τ(i) for all i. For a martingale F, we define F(σ ⊕ τ) =∑
η F(η)2|σ|+|τ|−|η|~|η| = 2 max{|σ|, |τ|} and σ ⊕ τ � η�.

Note that G(σ) = F(σ ⊕ τ) is a martingale for each martingale F and each τ.

Theorem 5.10. Van Lambalgen’s Theorem holds for tt-reducibly randomness.

Proof. We shall prove that if A ⊕ B is tt-reducibly random then B is A-tt-reducibly
random. Suppose that there exists a A-tt reducible bounded A-Martin-Löf test {Vn} such
that B ∈ ∩

n VA
n . Note that there exists a tt-reducible rational probability distribution ν

with µ(VZ
n ∩ [σ]) ≤ νZ(σ)2−n, for all n ∈ N, σ ∈ 2<ω and Z. Let

Wn = {X ⊕ Y | X ∈ 2ω,Y ∈ VX
n }.

Note that A ⊕ B ∈ ∩
n Wn. Since µ(Wn) ≤ max{µ(VX

n ) | X ∈ 2ω} ≤ 2−n, {Wn} is a
Martin-Löf test. We also let

ξ(σ ⊕ τ) = νσ(τ).

Then ξ is a computable probability distribution. Moreover for all n ∈ N andσ⊕τ ∈ 2<ω,

µ(Wn ∩ [σ ⊕ τ]) =µ({X ⊕ Y | X ∈ [σ],Y ∈ VX
n ∩ [τ]})

≤µ({X ⊕ Y | X ∈ [σ],Y ≤ νX(τ)2−n})
=νσ(τ)2−n

=ξ(σ ⊕ τ)2−n.

Hence Wn is a bounded Martin-Löf test. It follows that A⊕B is not computably random.
This is a contradiction with the assumption that A ⊕ B is tt-reducibly random.

Next we shall prove the other direction. That is, if A is tt-reducibly random and
B is A-tt-reducibly random then A ⊕ B is tt-reducibly random. Suppose there exists
a bounded Martin-Löf test {Wn} such that A ⊕ B ∈ ∩

n Wn. Note that there exists
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a computable rational probability distribution ν with µ(Wn ∩ [σ]) ≤ ν(σ)2−n, for all
n ∈ N and σ ∈ 2<ω. By passing to a subsequence we can assume that

µ(Wn ∩ [σ]) ≤ ν(σ)2−2n.

We define a c.e. relation P as

P(σ, τ) ⇐⇒ µ({Y | [σ] ⊕ Y ∈ Wn} ∩ [τ]) >
ν(σ ⊕ τ)
ν(σ ⊕ λ)2−n.

Let
Un = {X | (∃σ ≺ X)(∃τ)P(σ, τ)}.

We shall prove that Un is a bounded Martin-Löf test. It is clear that

µ(Un ∩ [σ]) × µ({Y : [σ] ⊕ Y ∈ Wn} ∩ [σ]) ≤ µ(Wn ∩ [σ ⊕ τ]).

Hence if P(σ, τ) then

µ(Un ∩ [σ])
ν(σ ⊕ τ)
ν(σ ⊕ λ)2−n ≤ ν(σ ⊕ τ)2−2n.

It follows that µ(Un ∩ [σ]) ≤ ν(σ ⊕ λ)2−n. Hence for all σ ∈ 2<ω, µ(Un ∩ [σ]) ≤
ν(σ ⊕ λ)2−n by separating [σ] into

∪
[σ′] such that (∃τ)P(σ′, τ). Since n and σ is

arbitrary, Un is a bounded Martin-Löf test.
Since A is computably random, it follows that {n | A ∈ Un} is finite. Thus for all but

finitely many n we have A < Un, i.e.,

µ({Y | A ⊕ Y ∈ Wn} ∩ [τ]) ≤ ν(A � m ⊕ τ)
ν(A � m ⊕ λ)2−n

for all m. Especially by letting m = 0 we get µ({Y | A ⊕ Y ∈ Wn} ∩ [τ]) ≤ ν(λ ⊕ τ)2−n.
Let VX

n = {Y | X⊕Y ∈ Wn}. Then µ(VX
n ∩ [τ]) ≤ ν(λ⊕τ)2−n. Hence VA

n is A-tt-reducibly
bounded A-Martin-Löf test. Moreover B ∈ ∩

n VA
n , contradicting the assumption that B

is A-tt-reducibly random.
�

6 High degrees and separating notions of randomness
In this section we look at the difference between Schnorr randomness and truth-table
Schnorr randomness.

Theorem 6.1. For every set A and B, there is a set R such that B ≤T R, R is not
computably random and R is truth-table Schnorr random relative to A. If A⊕B is high,
one also obtains R ≤T A ⊕ B.

Corollary 6.2. Let A be a high set. Then there is a set R ≡T A such that R is not
computably random and truth-table Schnorr random relative to A.

It follows that if A is high, TTS(A) ⊂ Sch(A). Here the inclusion is proper.
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Proof of Theorem 6.1. The idea of the construction is similar to that of [8].
First we fix a strictly increasing function F : ω → ω which dominates all com-

putable functions. For each such F we can construct a needed R. Later we let F ≤T

A ⊕ B to get R ≤T A ⊕ B.
We shall construct a martingale V that dominates all A-tt-reducibly martingale. To

make such V we sum up an effective listing of A-computable martingale whose steps
are bounded by F. Using N we shall construct R that is not computably random and
A-tt-Schnorr random.

Let F : N → N be a strictly increasing function such that F dominates all com-
putable functions. We also let

am =

n if F(n) = m
m otherwise.

Since F is strictly increasing, {ai} is computable from F. It is clear that for each l there
are at most 2 indices m with am = l. Divide the integers into intervals Im of length
3am + 1 such that min(I0) = 0 and min(Im+1) = max(Im) + 1 for every m.

Let {Mi} be an effective listing of all A-partial computable martingales. We also let

Ni(σ) =

Mi(σ) if (∀τ)|τ| ≤ |σ| ⇒ Mi(τ)[F(i + |τ|)] ↓
0 otherwise.

Then for each σ ∈ 2<ω and k such that |σ| ∈ Ik let

V(σ) = 2−k +
∑
i≤k

2−iNi(σ).

Note that V is computable from A and F.
Let { fi} be a effective listing of all A-partial computable functions such that

fi(n) ↑⇒ fi(m) ↑

for all n ≤ m and i. Now let E = {x0, x1, x2, · · · }, where

xn = min{y : (∀m < n)xm < y ∧ ( fm(y) < F(y) ∨ fm(y)[F(y)] ↑)}.

We need to check that every every xn can be defined. For a contradiction suppose that
there is n such that

(∃m < n) fm(y) ≥ F(y) ∧ fm(y)[F(y)] ↓
for almost all y. Since n is finite, there is m such that fm(y) ≥ F(y) and fm(y)[F(y)] ↓
for almost all y. This contradicts the fact that F dominates all computable functions.
Note that E is computable from A and F.

Using E, one can now define the set R inductively on all intervals Im as follows.

• If there is k > m with am = ak or if am < E, then choose R on Im such that R
is not 0 on all of the least 2am elements of Im and V grows on Im by at most the
factor 22am/(22am − 1).
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• Otherwise (that is, if there is no k > m with am = ak and if am ∈ E), choose
R(min(Im) + u) = 0 for u ∈ {0, 1, · · · , 2am − 1} and choose R(min(Im) + u) =
B(u − 2am) for u ∈ {2am, 2am + 1 · · · , 3am}.

Note that R is computable from A, B and F Now it is shown that R has the desired
properties.

We shall prove B ≤T R. To compute B(n), search for the first interval Im such that
am ≥ n+1 and R(min(Im)+u) = 0 for all u ∈ {0, 1, · · · , am−1}. As E contains a number
larger than n, the search will terminate. It can be seen that B(n) = R(min(Im)+2am+n).

We shall prove that R is not computably random. One can construct a computable
martingale d that succeeds on R as follows. The initial capital of d is set as 3 and
for each interval Im, d invests 2−2am , which is then bet on R begin 0 for the first 2am

members of Im. If all bets are true, then d doubles the invested capital 2am times and
makes a profit of

22am · 2−2am − 2−2am = 1 − 2−2am .

Otherwise, d loses the invested 2−2am . On one hand, all potential losses can be bounded
by ∑

m

2−2am ≤
∑
l≥0

2 · 2−2l < 3.

and therefore the martingale never takes the value of 0. On the other hand, so the
profit is at least 3/4 on these intervals and the value of d goes to infinity on R. Thus d
witnesses that R is not computably random.

We shall prove that R is truth-table Schnorr random relative to A. To see this,
consider the following function r̃(n).

r̃(n) = n ·
(
Πm<n223m+1) · Πm>0

(
22m

22m − 1

)m+2 .
Note that an infinite product Πkqk such that qk > 1 satisfies Πkqk < ∞ if and only if∑

k(qk − 1) < ∞. To adjust for the fact that some intervals Im are copies of each other
as described in the first component of the definition of R, let qk = 22m/(22m − 1) as
appropriate. Since 22m/(22m − 1)− 1 = 1/(22m − 1), this inequality can be applied here.
For each m, there are at most m + 2 values of k for which qk = 22m/(22m − 1). Hence∑

m>0

(m + 2) · 1
22m − 1

≤
∑
m>0

2m+2

22m ≤
∑
m>0

22−m = 4

and (Πm>0( 22m

22m−1 )m+2) is a positive real number. Therefore, the function r̃ has a com-
putable upper bound r such that r(n) ∈ N for all n.

For a contradiction assume that d′ is a A-tt-reducible martingale and f is a com-
putable function such that

d′(R � f (n)) > r(n)

infinitely many n and, in addition, n < fk(n) < fk(n + 1) for all n. Let

h(n) = max{s : d′(σ)[s] ↓ for all |σ| ≤ n}.
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Note that h is computable. Since there are infinitely many indices i such that Mi = d′,
there is a index k such that Mk = d′ and h(n) ≤ F(k + n) for all n. Hence Nk = d′.

Now consider n > x0 + x1 + · · · + xk. Then for each u < n, there is at most one
interval Im such that m ≤ f (n), am = u, F(am) = u and u ∈ E; for u ≥ n there is no
interval Im satisfying these conditions. On the intervals that satisfy these conditions, the
martingale V can increase its capital by at most a factor of 23am+1; on all other intervals
Im below f (n), mg can increase its capital by at most a factor of 22am/(22am −1). Hence,
one has that

V(R � f (n)) ≤ r(n)/n.

Since
Nk(R � f (n)) ≤ n · V(R � n)

for almost all n, then
Nk(R � f (n)) ≤ r(n)

which is a contradiction.
If A⊕B is high, one obtains F ≤T A⊕B. Hence R ≤T A⊕B because R is computable

from A, B and F. �

This has an interesting corollary. Franklin and Stephan [7] asked whether each
Schnorr random real is half of a real for which van Lambalgen’s Theorem fails. They
proved a partial result, i.e., if A is a Schnorr random real and A 6≥T φ

′, then there is
a real B such that A ⊕ B is Schnorr random and A is not B-Schnorr random. Now we
have the following corollary immediately.

Corollary 6.3. If A is a Schnorr random real, then there is a real B such that A ⊕ B is
Schnorr random and A is not B-Schnorr random.

Proof. Given A, choose B such that B ≥T A and B is truth-table Schnorr random
relative to A. Such a B exists by Corollary 6.2. Then A ⊕ B is Schnorr random by
Theorem 4.10. But as B is Turing reducible to A, B is not Schnorr random relative to
A. �

7 Equivalent classes
In this section we study lowness notions for tt-Schnorr randomness.

Theorem 7.1 (Franklin and Stephan [6]). The followings are equivalent.

(i) The tt-degree of A is computably traceable. That is, there is a computable func-
tion g such that for each f ≤tt A, there are uniformly computable finite sets
S 0, S 1, · · · with |S n| ≤ g(n) and f (n) ∈ S n for all n.

(ii) A is Schnorr trivial.

(iii) A is low for tt-Schnorr randomness.

(iv) There is a set B such that B is A-tt-Schnorr randomness and A ≤snr B.
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Franklin and Stephan use the expression “tt-low for Schnorr randomness”. How-
ever we prefer the one “low for tt-Schnorr randomness” because this is not the change
of lowness but the change of randomness.

The last piece in the picture is lowness for tt-reducible measure machine. The proof
is a straightforward modification of that of Theorem 2.19.

Definition 7.2. A set A is low for tt-reducible measure machine if for each A-tt-
reducible measure machine M there is a tt-reducible measure machine N such that
for a constant c, KN(σ) ≤ KM(σ) + c for all σ.

Theorem 7.3. A set A is low for tt-reducible measure machine iff the tt-degree of A is
computably traceable.

Proof. The “only if” direction follows from the fact that lowness for tt-reducible mea-
sure machine implies lowness for tt-Schnorr randomness.

Now suppose that the tt-degree of A is computably traceable. Let M be an A-tt-
reducible measure machine. We need to define a tt-reducible measure machine N such
that for a constant c, KN(σ) ≤ KM(σ) + c for all σ.

Let D0,D1, · · · be a canonical list of the finite subsets of {0, 1}∗×{0, 1}∗. Recall that
the domain of Di is the set of all σ such that (σ, τ) ∈ Di for some τ. Let tn be the least
t such that µ(dom(M[t])) > 1 − 2−2n. Let Gs be the graph of M[s], that is, the set of
all (σ, τ) such that M(σ)[s] = τ. Let cn be such that Dc0 = Gt0 and Dcn+1 = Gtn+1 −Gtn .
Note that µ(dom(Dcn+1 )) < 2−2n. Let F0, F1, · · · be a computable sequence of finite sets
such that for each n we have |Fn| ≤ 2n and cn ∈ Fn. Such a sequence exists because the
function n → cn is tt-reducible to A and the degree of A is computably traceable. By
removing elements if necessary, we can assume that for each c ∈ Fn+1, the domain of
Dc is prefix-free and µ(dom(Dc)) < 2−2n.

Let L = {(|τ| + 1, σ) : ∃n∃c ∈ Fn((τ, σ) ∈ Dc)}. This set is c.e., and its weight is∑
n

∑
c∈Fn

µ(dom(Dc))
2

<
∑

n

|Fn|2−(2n+1) ≤
∑

n

2n2−(2n+1) = 1.

Thus L is a Kraft-Chaitin set. Furthermore, the weight of L is computable, since we
can approximate it to within 2−m by

∑
n≤m

∑
c∈Fn
µ(dom(Dc))/2. Now the Kraft-Chaitin

Theorem gives us a prefix-free machine N such that for each request (d, σ) in L, there
is a ν ∈ 2d such that N(ν) = τ. In particular, if M(σ) = τ then (d, τ) ∈ Dcn for some
n, and hence there is a ν such that |ν| = |σ| + 1 and N(ν) = τ. Furthermore, µ(dom(N))
is equal to the weight of L, and hence is computable. So N is a tt-reducible measure
machine and KN(σ) ≤ KM(σ) + c for a constant c. �

8 Discussion
We defined tt-Schnorr randomness and tt-reducibly randomness which are another
relativizations of Schnorr randomness and computably randomness respectively. We
proved that van Lambalgen’s Theorem holds for both randomnesses. We also estab-
lished the complete equivalence of lowness notions for tt-Schnorr randomness. Hence
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these randomnesses are more proper relativizations than those of usual ones. We usu-
ally think of only relativization by computability, which is very natural but sometimes
does not work well. This is because this relativization is essentially induced by Tur-
ing reducibility. Since Schnorr randomness and computably randomness fit truth-table
reducibility well, another relativization is proper. We should say that the restriction of
tt-Schnorr randomness and tt-reducibly randomness are by machines and not by com-
putability. Then a machine restriction is a good way in order to define a new random
concept for which van Lambalgen’s Theorem holds. We also proved that the classes
of tt-Schnorr random reals relative to a high set contain reals Turing equivalent to the
high set. Then we gave the answer to the question whether each Schnorr random real
is half of a real for which van Lambalgen’s Theorem fails.
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[13] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its applica-
tions, Graduate Texts in Computer Science, Springer-Verlag, New York, second
edition, 1997, and 3rd edition 2007.
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