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Abstract

The study of Martin-Löf randomness on a computable metric space
with a computable measure has had much progress recently. In this paper
we study Martin-Löf randomness on a more general space, that is, a com-
putable topological space with a computable measure. On such a space,
Martin-Löf randomness may not be a natural notion because there is not
a universal test, and Martin-Löf randomness and complexity randomness
(defined in this paper) do not coincide in general. We show that SCT3 is
a sufficient condition for the existence and the coincidence and study how
much we can weaken the condition.

Keywords: computable analysis, computable topological space, separation axiom, com-

putable measure, Martin-Löf randomness

1 Introduction

What does it mean to say that a binary sequence is “random”? Von Mises
[26] tried to give an answer by introducing the concept of a collective with the
motivation of formalizing probability. A collective is an actual sequence whose
limiting frequency exists and remains the same when one replaces the sequence
with a subsequence. Although Wald and Church gave a rigorous mathematical
definition of this concept using the notion of computability, Ville [25] showed
that there exists a collective that does not satisfy the law of the iterated log-
arithm, which a random sequence should satisfy. Hence a collective is not a
natural randomness notion.

About fifty years later, Martin-Löf [17] introduced another definition of ran-
domness that is calledMartin-Löf randomness now. Martin-Löf randomness has
many nice properties. In this paper we forcus on the following two important
properties.

(i) Martin-Löf randomness has a universal test, that is, only one test is enough
to see whether a sequence is random or not.
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(ii) Martin-Löf randomness has several characterizations by complexity. The
initial contributors are Levin [14, 15], Schnorr [21] and Chaitin [4].

It should be noted that, unlike a collective, each Martin-Löf random sequence
satisfies the strong law of large numbers (SLLN) and the law of the iterated
logarithm (LIL) [27, 16]. This is important from the view point of probabil-
ity theory. As a result, Martin-Löf randomness is now regarded as a natural
randomness notion.

Martin-Löf randomness can be generalized to a more general space. Com-
putable analysis [30, 3, 33] defined a computable metric space and a computable
topological space, which are a metric space and a topological space equipped
with computability. Martin-Löf randomness on a computable topological space
has studied in the literature such as Zvonkin and Levin [36] and Hertling and
Weihrauch [10]. However it has not been well developed. The following should
be noted the following comparing to Martin-Löf randomness on Cantor space.

(i) They showed the existence of a universal test. However they use stronger
computability of the measure than we use in this paper.

(ii) So far no characterization by complexity has been known.

In contrast the study on Martin-Löf randomness on a computable metric space
had much progress recently.

(i) Martin-Löf randomness has a universal test.

(ii) A characterization by complexity of Martin-Löf test was partially given by
Gács [8] and was completely showed by Hoyrup and Rojas [11]. although
they use a stronger condition than usual.

The notion of probability has a strong relation with randomness while the
usual probability theory does not have a rigorous definition of randomness. Since
the probability theory is developed on a measure space, we would like to have
a natural and mathematical notion of randomness on a computable topological
space with a computable measure.

An important question is whether Martin-Löf randomness is a natural ran-
domness notion even on a computable topological space with a computable mea-
sure. Martin-Löf randomness seems a natural notion on Cantor space and on a
computable metric space with a computable measure while it is doubtful that
Martin-Löf randomness on a computable topological space with a computable
measure is a natural randomness notion.

The main claim of this paper is that Martin-Löf randomness is a natural
randomness notion only when the underlying topological space has a somewhat
strong topology. We will show that, on a computable topological space with a
computable measure,

(i) Martin-Löf randomness does not have a universal test,

(ii) Martin-Löf randomness is not equivalent to a randomness notion induced
by a kind of complexity
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in general.
Another important claim is the following. We define a randomness notion by

complexity and call it complexity randomness. The definition of this randomness
notion uses “closed” sets (not open sets), which is siginificantly different from
the attempts up to now. The author believes that a randomness notion defined
by complexity should use closed sets and will explain the reason later.

Another question discussed in this paper is what is the right definition of
a computable measure on a computable topological space. on a computable
metric space with a computable measure, Hoyrup and Rojas [11] gave the com-
plete characterization by complexity of Martin-Löf randomness. The argument
depends on the detailed study of a computable measure on a computable metric
space. The definition of complexity randomness also highly depends on the ar-
gument on the definition of a computable measure on a computable topological
space.

We review some works of the study of computability of measures. On the
unit interval, Weihrauch [29] gave natural computability of measures. Schröder
[23] generalized it to a computable topological space. Bosserhoff [2] also used
the definition.

Another way is to consider the space of measures. The space of measures
on a computable metric space is another computable metric space, which is
proved by Gács [8]. This observation naturally induces a natural computability
of measures, that is, a computable measure is a computable point in the space.
In this paper we take this approach and generalize it. We will see that the
definition coincides with the definition by Schröder [23].

Edalat [7] used regularity to study computability of measures and, because
of it, it is not general enough. Weihrauch et al. [35, 12] defined a computable
measurable space but the requirement of computable measures is too strong
from our point of view.

The paper is constructed as follows. In Section 2 we review the needed no-
tions from various areas, namely from topology, measure theory, computable
analysis, and about computable topological spaces. In Section 3 we study com-
putability of measures on a computable topological space. In Section 4 we show
an unnatural property of Martin-Löf randomness on a computable topological
space, taht is, Martin-Löf randomness does not have a universal test in gen-
eral. In Section 5 we define complexity randomness and study when Martin-Löf
randomness and complexity randomness coincide.

2 Preliminaries

2.1 General topology

We review general topology from [34]. A topology on a set X is a class τ of
subsets of X , called the open sets, satisfying the following: closed under union,
closed under finite intesection and ∅, X ∈ τ . We say (X, τ) is a topological space.
A closed set is the complement of an open set. A base for τ is a class β ⊆ τ
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such that each element of τ is the union of elements of β. A subbase for τ is a
class β′ ⊆ τ such that the class of all finite intersections of elements of β ′ forms
a base for τ . A space is second countable if it has a countable base.

The following are some separation axioms. Let A be the class of closed sets.

T0 :(∀x, y ∈ X, x 6= y)(∃W ∈ τ)((x ∈W ∧ y 6∈W ) ∨ (x 6∈W ∧ y ∈ W ))),

T1 :(∀x, y ∈ X, x 6= y)(∃W ∈ τ)(x ∈ W ∧ y 6∈W ),

T2 :(∀x, y ∈ X, x 6= y)(∃U,W ∈ τ)(U ∩ V = ∅ ∧ x ∈ U ∧ y ∈ V ),

T3 :(∀x ∈ X, ∀A ∈ A, x 6∈ A)(∃U,W ∈ τ)(U ∩ V = ∅ ∧ x ∈ U ∧A ⊆ V ).

We will speak of Ti-spaces for i = 0, 1, 2, 3.
For topological spaces X and Y , a function f : X → Y is continuous iff

for each open set H in Y , f−1(H) is open in X . The class of all continuous
mappings from X to Y is denoted by C(X,Y ); if Y = R, then this class is
denoted by C(X). The set of all bounded functions in C(X) is denoted by
Cb(X).

2.2 Measure theory

We review measure theory from [1]. An algebra F of sets is a class of subsets of
some fixed set X such that ∅, X ∈ F and it is closed under union, intersection
and complement. An algebra of sets A is called a σ-algebra if it is also closed
countable union. A real-valued set function µ on a class of sets F is called
countably additive if µ(

⋃∞
n=1An) =

∑∞
n=1 µ(An) for all pairwise disjoint sets

An in F such that
⋃∞

n=1An ∈ F . A countably additive set function defined
on an algebra is called a measure. A measure is probabilistic if µ(X) = 1. In
this paper we only consider non-negative probabilistic measures and we use a
measure to mean a non-negative probabilistic measure.

On a topological space X , the Borel σ-algebra B(X) is the σ-algebra gener-
ated by all open sets. The sets in B(X) are called the Borel sets in the space X .
The Baire σ-algebra Ba(X) is the σ-algebra generated by all sets of the form
{x ∈ X : f(x) > 0}

The sets in Ba(X) is called the Baire sets in the space X . The sets of the
form {x ∈ X : f(x) > 0} where f ∈ C(X) are called functionally open and
their complements are called functionally closed. In a metric space, any closed
set is the set of zeros of a continuous function. Hence the Borel and Baire
σ-algebras of a metric space coincide.

A measure on the Borel σ-algebra B(X) is called a Borel measure on X and
a measure on the Baire σ-algebra Ba(X) is called a Baire measure. We use
M(X) to mean the set of all (non-negative probabilistic) Borel measures and
Mσ(X) to mean the set of all (non-negative probabilistic) Baire measures. The
weak topology on the space Mσ(X) of Baire measures on X is the topology with
the base of the sets

WG1,...,Gn,ε(µ) = {ν ∈ Mσ(X) : ν(Gi) > µ(Gi)− ε, i = 1, . . . , n} ,
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where Gi = X\f−1
i (0), fi ∈ C(X), ε > 0. The A-topology on the space M(X)

is defined by means of neighborhoods of the form

U(µ,G, ε) = {ν : µ(G) < ν(G) + ε},

where µ ∈ M(X), G ∈ O(X), ε > 0. In a metric space, the A-topology
coincides with the weak topology.

2.3 Computable analysis

We will use essentially the terminology from [33]. We assume that the readers
are familiar with computability on Σ∗, which has been well studied [24, 19, 20, 5].

Let Σ be a finite alphabet such that 0, 1 ∈ Σ. By Σ∗ we denote the set
of finite words over Σ, and by Σω the set of infinite sequences p : N → Σ
over Σ, p = (p(0)p(1) . . .). We use the “wrapping function” ι : Σ∗ → Σ∗,
ι(a1a2 . . . ak) := 110a10a20 . . . ak011. For u ∈ Σ∗ and w ∈ Σ∗ ∪Σω let u� w iff
ι(u) is a subword of w. Let 〈i, j〉 := (i+j)(i+j+1)/2+j be the bijective Cantor
pairing function on N. We consider standard functions for finite or countable
tupling on Σ∗ and Σω denoted by 〈·〉 in [30, Definition 2.1.7].

A partial function is denoted by f :⊆ A → B and a total function is denoted
by f : A → B. Let Y0, . . . , Yn ∈ {Σ∗,Σω} and Y = Y1 × . . . × Yn. A function
f :⊆ Y → Y0 is computable if for some Type-2 machineM , f is the function fM
computed byM . Informally, a Type-2 machine is a Turing machine, which reads
from input tapes with finite or infinite inscription, operates on work tapes and
write one-way to an output tape. For Y0 = Σ∗, fM (y) = w, if a Turing machine
M on input y halts with w on the output tape. For Y0 = Σω, fM (y) = q, if M
on input y computes forever and writes writes q ∈ Σω on the output tape. On
Σ∗ we consider the discrete topology and on Σω the topology generated by the
base {wΣω : w ∈ Σ∗} of open sets. Every computable function is continuous.

A notation of a setM is a surjective function γ :⊆ Y →M where Y = Σ∗ and
a representation where Y = Σω . An examples is the representation ρ :⊆ Σω → R

of the real numbers, which we will define later. A partial function h :⊆ Y → Y0

realizes a function f :⊆ M → M0 if f(x) = γ0 ◦ h(y) whenever x = γ(y) and
f(x) ↓. This means that h(y) is a name of f(x) if y is a name of x ∈ dom(f).
The function f is called (γ, γ0)-computable if it has a computable realization. A
point x ∈M1 is γ1-computable iff x = γ1(p) for some computable p ∈ dom(γ1).

We write γ1 ≤ γ0 (γ1 is reducible to γ0) if M1 ⊆ M0 and the identity id :
M1 → M0 is (γ1, γ0)-computable. This means that some computable function
h translates γ1-names to γ0-names, that is, γ1(p) = γ0 ◦ h(p). Computable
equivalence is defined canonically.

F ∗∗ is the set of all partial continuous functions f :⊆ Σ∗ → Σ∗, F ∗ω is
the set of all partial continuous functions f :⊆ Σ∗ → Σω, Fω∗ is the set of
all partial continuous functions f :⊆ Σω → Σ∗ with open domain and Fωω

is the set of all partial continuous functions f :⊆ Σω → Σω with Gδ-domain
(a Gδ-set is a countable intersection of open sets). For a, b ∈ {∗, ω}, let ηab

be the standard representations of F ab in [30, Def 2.3.10]. For representations
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γ1 :⊆ Σa →M1 and γ2 :⊆ Σb →M2, a, b ∈ {∗, ω}, a representation [γ1 →p γ2] of
the (γ1, γ2)-continuous functions f :⊆M1 →M2 is defined by f = [γ1 →p γ2](q)
⇐⇒ ηabq := ηab(q) realizes f w.r.t. (γ1, γ2) where The restriction of [γ1 →p γ2]
to the total (γ1, γ2)-continuous functions is denoted by [γ1 → γ2].

2.4 Computable topological spaces

Definition 2.1 (computable topological spaces). An effective topological space
is a 4-tuple X = (X, τ, β, ν) such that (X, τ) is a topological T0-space and ν :⊆
Σ∗ → β is a notation of a base β of τ . X is a computable topological space if
dom(ν) is computable and

ν(u) ∩ ν(v) =
⋃

{ν(w) : (u, v, w) ∈ S} for all u, v ∈ dom(ν) (1)

for some c.e. set S ⊆ (dom(ν))3.

Definition 2.2. Let X = (X, τ, β, ν) be an effective topological space.
Define a representation δ :⊆ Σω → X of the points as

x = δ(p) ⇐⇒ (∀w ∈ Σ∗)(w � p ⇐⇒ x ∈ ν(w))

and a representation θ :⊆ Σω → τ of the set of open sets as

W = θ(p) ⇐⇒

{
w � p⇒ w ∈ dom(ν)

W =
⋃
{ν(w) : w � p}.

Define a representation δ− :⊆ Σω → X of the points as

δ−(p) = x ⇐⇒ θ(p) = X\{x},

where A is the closure of the set A ⊆ X and define a representation ψ− :⊆
Σω → A of the set of closed sets as

ψ−(p) = X\θ(p).

A δ-name of a point x is a list of all names of all of its basic neighborhoods
and a θ-name of an open set W is a list of base elements exhausting W .

Example 2.3 (computable topological spaces).

(i) (real line) Define R = (R, τ, β, ν) such that τ is the real line topology
and ν is a canonical notation of the set of all open intervals with rational
endpoints. The representation δ for R is denoted by ρ.

(ii) (unit interval) Define I = ([0, 1], τ ′, β′, ν′) as the restriction of R to [0, 1].
The representation δ for I is denoted by ρ.
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(iii) (extended real line with lower topology) Define R
+

< = (R
+
, τ<, β<, ν<)

where R
+
is the set of non-negative reals and +∞, τ< is the lower topology,

β< is the set

{R
+
} ∪ {(q,+∞] : q ∈ Q ∩ [0,+∞)},

and ν< is a canonical notation of β<. The representation δ of points in

R
+

< is denoted by ρ<.

(iv) (lower unit interval) Define I< = ([0, 1], τ ′I , β
′
<, ν

′
<) as the restriction of

R
+

< to [0, 1].

We sometimes say that a point is computable to mean that the point is ρ-
computable, that an open set is c.e. to mean that the open set is θ-computable
and that a closed set is co-c.e. to mean that the closed set is ψ−-computable.
On R or I we say that a real is c.e. to mean that the real is ρ<-computable and
that a real α is right-c.e. if D − α is c.e. for some D ∈ N. We also say that
a function f :⊆ X → X1 is computable to mean that f is (δ, δ1)-computable

and that a function f : X → R
+

is lower semicomputable to mean that f is
(δ, ρ<)-computable.

In what follows we assume that any effective topological space is equipped
with these representations correspondingly. For example, for an effective topo-
logical space X1 = (X1, τ1, β1, ν1), the representation δ1 denotes the represen-
tation of points in X1 defined here.

A variety of operations on points, sets and functions are computable w.r.t.
the representations from Definition 2.2. We give some additional examples.

Theorem 2.4 ([33]).

(i) eval : (f, x) 7→ f(x) is ([δ1 →p δ2], δ1, δ2)-computable.

(ii) For f :⊆ X1 → X2 and g :⊆ X2 → X3, (f, g) 7→ g◦f is ([δ1 →p δ2], [δ2 →p

δ3], [δ1 →p δ3])-computable.

(iii) There exists a ([δ1 →p δ2], θ2, θ1)-computable function that maps every
continuous function f :⊆ X1 → X2 and every open set W ⊆ X2 to some
open set T ⊆ X1 such that f−1[W ] = T ∩ dom(f).

Weihrauch [31, 32] studied various computable versions of separation axioms.
In this paper we use the following.

Definition 2.5 (axioms of computable separation). Let X be a computable
topological space.

CT′
2: There is a c.e. set H ⊆ Σ∗ × Σ∗ such that

(∀x, y, x 6= y)(∃(u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v)) and
(∀(u, v) ∈ H)(ν(u) ∩ ν(v) = ∅ ∨ (∃x)ν(u) = {x} = ν(v)).

SCT2: There is a c.e. set H ⊆ Σ∗ × Σ∗ such that
(∀x, y, x 6= y)(∃(u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v)) and
(∀(u, v) ∈ H)ν(u) ∩ ν(v) = ∅.
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SCT3: There are a c.e. set R ⊆ dom(ν) × dom(ν) and a computable function
r :⊆ Σ∗ × Σ∗ → Σω such that for all u,w ∈ dom(ν),
ν(w) =

⋃
{ν(u) : (u,w) ∈ R},

(u,w) ∈ R ⇒ ν(u) ⊆ ψ− ◦ r(u,w) ⊆ ν(w).

Weihrauch [32] also cosidered the axiom of CT2, which uses a multi-function
in the definition. He showed CT2 ⇐⇒ CT′

2. For simplicity, we prefer to call a
space CT2 and to use the definition of CT′

2. Note that SCT3 ⇒ CT2 ⇒ T2 and
SCT3 ⇒ T3.

3 Computability of measures

In this section we study computability of measures via the representation ap-
proach.

In measure theory a lot of connections are known between the properties ofX
and the corresponding properties of the spaces of measures such as completeness,
compactness, metrizability and separability. Gács [8] proved that the space of
measures on a computable metric space is another computable metric space.
This result is another correspondence between a space and the space of measures
on it.

In the result above the space of measures is equipped with the weak topology.
On a more general space, however, A-topology is more natural. Recall that
the A-topology coincides with the weak topology on a metric space. Similar
connections are also known with the A-topology. Refer to [1, 8.10(iv)] for the
detail. Here we show a version on a computable topological space of Gács’
result.

3.1 A computable topological space of measures

Here we show that the space of measures on a computable topological space is
another computable topological space with a natural structure. In what follows
a measure is always a Borel measure.

Let X = (X, τ, β, ν) be a computable topological space. We consider the
space M(X) of Borel measures. Let τA be the A-topology on M(X). The
following sets form a countable subbase of the A-topology:

{µ : µ(G) > q}

where G is a finite union of base sets and q ∈ Q ∩ [0, 1].
Then M(X) is second-countable because the above sets form a countable

subbase. Furthermore the space M(X) is always T0.

Proposition 3.1. The space M(X) with the A-topology is T0.

Proof. Let µ1, µ2 be measures on X such that µ1 6= µ2. Then there exists an
open set O such that µ1(O) 6= µ2(O) by [1, Lemma 7.1.2.]. It follows that there
exists a finite union G of base sets such that µ1(G) 6= µ2(G). We can assume
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that µ1(G) < µ2(G) without loss of generality. Then there exists q ∈ Q ∩ [0, 1]
such that µ1(G) < q < µ2(G). Let U = {µ : µ(G) > q}. Note that U is an
open set on M(X) with the A-topology. We also have µ1 6∈ U and µ2 ∈ U .
Hence the space is T0.

Now we equipM(X) with a natural structure to be a computable topological
space. For a notation µ :⊆ Σ∗ →M define a notation of finite subsets as

µfs(w) =W ⇐⇒

{
(∀v � w)v ∈ dom(µ),

W = {µ(v) : v � w}.

Then νfs is a notation of finite unions of base sets. Let µA be the notation of
the countable subbase of the A-topology such that

µA(〈u, v〉) = {µ : µ(νfs(u)) > νQ∩[0,1](v)}.

Let νA =
⋂
µfs
A. Then νA is a notation of a base. Let βA = {νA(w) : w ∈

dom(νA)}. Then βA is the base.

Proposition 3.2. The 4-tuple M(X) = (M(X), τA, βA, νA) is a computable
topological space.

Proof. It is clear that M(X) is an effective topological space. All we have to do
is to see whether (1) holds.

Let σi ∈ dom(νA) for i = 1, 2. Then there exists finite sets Wi such that
Wi = {τi : τi � σi}. Note that τi ∈ Wi ⇒ τi ∈ dom(µA). Let W = W1 ∪W2.
Then

⋂

τ∈W

µA(τ) =
⋂

τ1∈W1

µA(τ) ∩
⋂

τ2∈W2

µA(τ) = νA(σ1) ∩ νA(σ2).

Hence one can computably find σ3 from σ1 and σ2 such that νA(σ1)∩ νA(σ2) =
νA(σ3). This ensures the existence of a c.e. set SA ⊆ ((Σ∗)3) satisfying (1).

We give an intuitive interpretation of δA-name p of µ ∈ M. For each finite
union G of base sets, we can enumerate all rationals q such that µ(G) > q from
p. We say that µ(G) is approximated from below by p. Conversely suppose that
µ(G) is approximated from below for each G with help from p′. Then we can
construct a representation of µ from p′. In the following we use this argument
without giving further details. By this discussion, it is easy to see that δA is
equivalent to the canonical representation in Schröder [23].

Now the following definition is natural. Note that this definition is a general
version of that of a computable measure on a computable metric space in [8, 11].

Definition 3.3. Let X = (X, τ, β, ν) be a computable topological space. A
measure on X is computable if it is a computable point on the computable
topological space M.

The following is immediate.

Proposition 3.4. A measure µ is computable iff the meausre of the finite union
of base sets is uniformly approximated from below.
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3.2 Some properties

From here we study some computable operations on M.

Proposition 3.5. Let R+ be the set of non-negative reals and R
+
= R+∪{∞}.

We also write M to mean M(X).

(i) The plus operation + : M×M → M is (δA, δA, δA)-computable.

(ii) Let eval : M × τ → I be such that eval(µ,G) = µ(G). Then eval is
(δA, θ, ρ<)-computable.

(iii) The integral operation
∫

: C(X,R+) × M → R
+

is ([δ → ρ<], δA, ρ<)-
computable.

(iv) The integral operation
∫

: Cb(X,R
+) × M → R+ is ([δ → ρ], δA, ρ)-

computable.

Proof. (i) Let µ1, µ2 be measures in M(X) and p1, p2 be δA-names respectively.
For each finite union G of base sets, µ1(G) and µ2(G) are approximated from
below by p1 and p2. Hence (µ1 +µ2)(G) is also approximated from below by p1
and p2. Then one can construct a name of µ1 + µ2 from p1 and p2.

(ii) For each open set G, we can enumerate all finite union of base sets which is
contained in G by a θ-name of G. The measure µ of each finite union of base
sets is approximated by rationals from below by a δA-name of µ. This follows
that µ(G) is approximated by rationals from below.

(iii) Let f ∈ C(X,R+) and µ ∈ M(X). Note that

∫
fdµ = sup{

k∑

i=1

(ai−ai−1) ·µ(f
−1(ai,∞)) : 0 = a0 < a1 < . . . < ak, ai ∈ Q}.

Since (ai,∞) is open in R+ for each i, one obtains θ-name of f−1(ai,∞) by the
representation of f by Proposition 2.4. Hence µ(f−1(ai,∞)) is approximated
by rationals from below by the representations of f and µ by (ii).

(iv) Let f ∈ Cb(X,R+) and µ ∈ M(X). Since f is bounded, there exists D such
that D − f ∈ C(X,R+). Then

∫

X

fdµ = Dµ(X)−

∫

X

(D − f)dµ(<∞)

is approximated by rationals from above.

4 Universality

Here we study the existence of a universal Martin-Löf test on a computable
topological space with a computable measure. Zvonkin and Levin [36] showed
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the existence of a universal ML-test with a measure such that the measure of the
finite unions of base sets is uniformly computable. Hertling and Weihrauch [10]
showed the existence with a measure such that the measure of the finite unions
of base sets is uniformly right-c.e. From now on we consider a computable
measure in our definition, that is, a measure such that the measure of the finite
unions of base sets is uniformly c.e.

4.1 Definition

Let X = (X, τ, β, ν) be a computable topological space and µ be a a computable
non-negative probabilistic Borel measure.

Definition 4.1 ([36, 10]). A Martin-Löf test (or ML-test) on X is a sequence of
uniformly c.e. open sets {Un} with µ(Un) ≤ 2−n. A point x ∈ X is Martin-Löf
random (or ML-random) if it passes all ML-tests, that is, x 6∈

⋂
n Un.

Definition 4.2 (universal test). A ML-test {Un} is universal if, for each ML-
test {Vn}, we have

⋂
n Vn ⊆

⋂
n Un.

The question of this section is whether a universal test exists. It should be
noted that the existence of a universal test is equivalent to the existsnce of a
universal integral test.

Definition 4.3. An integral test is a lower semicomputable function t : X →

R
+
such that

∫
tdµ ≤ 1. An integral test is universal if, for each integral test f ,

we have {x | f(x) = ∞} ⊆ {x | t(x) = ∞}.

Proposition 4.4. A point x ∈ X is ML-random iff t(x) < ∞ for all integral
tests.

Proof. Suppose that x is not ML-random. Then there exists a ML-test {Un}
with x ∈

⋂
n Un. We can assume that {Un} is decreasing. Let t(y) = supn{n |

y ∈ Un}. Then t is lower semicomputable and
∫
tdµ <∞. Hence t′ = t/c is an

integral test for some c ∈ N. Since
⋂

n Un = {x | t(x) = ∞}, we have t′(x) = ∞.
Suppose that there exists an integral test t such that t(x) = ∞. Let Un =

{y | t(y) > 2n}. Then {Un} is a ML-test. Since
⋂

n Un = {x | t(x) = ∞}, we
have x ∈

⋂
n Un.

Proposition 4.5. There exists a universal ML-test on X with µ iff there exists
a universal integral test on it.

Proof. Suppose that there exists a universal test {Un}. Let t be the integral
test such that

⋂
n Un = {x | t(x) = ∞} as we saw in the proof of Proposition

4.4. Let f be an arbitrary integral test. Then there exists a ML-test {Vn} such
that

⋂
n Vn = {x | f(x) = ∞}. Since {Un} is universal, t is also universal. The

other direction is proved in the same manner.
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4.2 When a universal test exists

It should be noted that, on a computable metric space with a computable mea-
sure, a universal test always exists.

Theorem 4.6 (Hoyrup and Rojas [11], partially by Gács [8]). There exists a
universal test on a computable metric space with a computable measure.

We also know that SCT3 is a sufficient condition for computable metrization.

Theorem 4.7 ([22, 9, 28]). Suppose that X is SCT3. Then its topology is
generated by some computable metric.

Then we can conclude that SCT3 is a sufficient condition for the existence
of a universal test.

Theorem 4.8. Suppose that X is SCT3. Then there exists a universal test on
X with a computable measure µ.

Here we give a direct proof of this theorem to see how the regularity is used.
We prepare some lemmas. We write Un ↑ U to mean that Un ⊆ Un+1 for all n
and limn Un = U .

Lemma 4.9. Suppose that X is SCT3. For each c.e. open set W , one can
construct a sequence {Un} of uniformly c.e. open sets and a sequencce {Vn} of
uniformly co-c.e. closed sets such that

(i) Un ↑W , Vn ↑W ,

(ii) Un ⊆ Vn ⊆W for all n.

Further Un can be the finite union of base sets for each n.

Proof. First we assume that W is a base set. Let R and r be in the definition
of SCT3. Let w ∈ dom(ν) be such that ν(w) = W . Since R is c.e., one can
construct a computable sequence {un} in Σ∗ such that

ν(w) =
⋃

{ν(u) | (u,w) ∈ R} =
⋃

n

{un | n ∈ N}.

Let Un =
⋃

i≤n ui and Vn =
⋃

i≤n ψ
− ◦r(ui, wi). Then Un ↑W and Vn ↑W . By

the property of r we have ν(ui) ⊆ ψ− ◦ r(ui, w) ⊆ ν(w). Then Un ⊆ Vn ⊆W .
Next we prove the lemma in a general case. Since W is c.e. open, one can

construct a computable sequence {Wm} of base sets such that

W =
⋃

m

Wm.

Then one can construct a computable double sequence {Um
n } of open sets and

a computable double sequence {V m
n } of closed sets such that Um

n ↑ Wm, V m
n ↑

Wm for each m and Um
n ⊆ V m

n ⊆Wm for each n,m. Let

Ûk =
⋃

i≤k

U i
k and V̂k =

⋃

i≤k

V i
k

12



for all k. Then {Ûk} is a computable sequence of finite unions of base sets

and {V̂k} is a sequence of uniformly co-c.e. closed sets. By the construction,

Ûk ⊆ V̂k ⊆W for all k.
We show that Ûk ↑W . Note that

Ûk =
⋃

i≤k

U i
k ⊆

⋃

i≤k+1

U i
k+1 = Ûk+1.

Let x ∈ W . Then there exists m such that x ∈ Wm. Since Um
n ↑ Wm, there

exists n such that x ∈ Um
n . Let k = max{m,n}. Then

x ∈ Uk
k ⊆

⋃

i≤k

U i
k = Ûk.

Hence W ⊆
⋃

k Ûk. It follows that Ûk ↑W .

Finally we show that V̂k ↑ W . This is because V̂k is increasing and Ûk ⊆
V̂k ⊆W for all k.

Proof of Theorem 4.8. Let k ∈ N. First we construct a c.e. open set W̃ from W
such that

(i) µ(W̃ ) ≤ 2−k,

(ii) µ(W ) ≤ 2−k implies W̃ =W .

For each c.e. open setW , construct {Un} and {Vn} as Lemma 4.9. We define

W̃ as
W̃ =

⋃

n

{Un | µ(Vn) ≤ 2−k}.

Since µ is computable and Vn is co-c.e. closed set, µ(Vn) is right-c.e. Hence W̃
is c.e. open.

We show µ(W̃ ) ≤ 2−k. If µ(Vn) ≤ 2−k, then

µ(
⋃

i≤n

Ui) = µ(Un) ≤ µ(Vn) ≤ 2−k.

Suppose that µ(Vn0
) > 2−k and µ(Vn0−1) ≤ 2−k for some n0. Then µ(Vn) ≥

µ(Vn0
) > 2−k for all n ≥ n0. It follows that µ(W̃ ) ≤ µ(

⋃
i≤n0

Ui) ≤ 2−k.

Suppose that µ(Vn) ≤ 2−k for all n. Then µ(W ) = µ(
⋃

n Un) = supn µ(Un) ≤
2−k.

If µ(W ) ≤ 2−k, then µ(Vn) ≤ 2−k for all n and W̃ =
⋃

n Un =W .
Since one can computably enumerate all sequences of uniformly c.e. open

sets, there exists a double sequence {Wm
n } of uniformly c.e. open sets satisfying

the following: if {An} be a sequence of uniformly c.e. open sets, then there

exists m such that An =Wm
n for all n. For each m,n, let W̃m

n be the c.e. open
set such that

13



(i) µ(W̃m
n ) ≤ 2−n,

(ii) µ(W̃m
n ) ≤ 2−n impliew W̃m

n =Wm
n .

Then {{W̃m
n }n}m is a computable enumeration of all ML-random tests.

Let Tn =
⋃

i W̃
i
n+i+1. Then {Tn} is a sequence of uniformly c.e. oepn sets.

Further
µ(Tn) ≤

∑

i

µ(W̃ i
n+i+1) ≤

∑

i

2−n−i−1 = 2−n.

Hence {Tn} is a ML-test. For any ML-test {An}, there exists m such that

An = W̃m
n for all n. Then An+m+1 ⊆ W̃m

n+m+1 ⊆ Tn for all n. Hence {Tn} is
universal.

4.3 A universal test does not exist in general

Here we give negative results. First it should be noted that there does not exist
a universal ML-test in general. Although we give a stronger result later, the
following example is easy to understand and is worth noting.

Proposition 4.10. There exists a computable topological space X and a com-
putable measure µ on it such that no test is universal.

Proof. We consider the lower unit interval I< in Example 2.3. Let α be a non-
computable c.e. real with α < 1. Let µ be the Dirac measure at α. In other
words the measure µ satisfies the following:

µ(U) =

{
1 if α ∈ U

0 otherwise.

We show that µ is computable. For each rational q < 1, the relation q < α is
semidecidable. Hence µ((q, 1]) is uniformly c.e. Since each finite union of base
sets has the form (q, 1], µ is computable.

Next we show that the set of non-ML-random points on I< with µ is

{x | α < x ≤ 1}.

Let x be a point such that α < x ≤ 1. Then there exists a rational q such that
α < q < x. Let Un = (q, 1] for all n. Since µ(Un) = 0 for all n, {Un} is a
ML-test. Further x ∈ (q, 1] =

⋂
n Un. Then x is not ML-random.

Let x be a point such that 0 ≤ x ≤ α. Suppose that x is not ML-random
for a contradiction. Then there exists a ML-test {Vn} with x ∈

⋂
n Vn. Since

x ∈ V1, α ∈ V1 and µ(V1) = 1. This is a contradiction. Hence x is ML-random.
Let {Wn} be a ML-test. Suppose that

⋂
nWn = {x | α < x ≤ 1}. Since

W1 is c.e. open, there exists a right-c.e. real β such that W1 = (β, 1]. Since⋂
nWn ⊆ W1, we have β ≤ α. If β < α, then µ(W1) = µ((β, 1]) = 1 > 2−1.

Hence β = α. Since α is lower semicomputable and β is right-c.e., α is a
computable real. This is a contradiction. Hence {Wn} is not universal. Since
{Wn} is arbitrary, there does not exist a universal ML-test.

14



4.4 When a universal test does not exist

We knew that SCT3 is a sufficient condition for the existence of a universal test.
How much do we weaken the condition. We show that CT2 is not sufficient.

Theorem 4.11. There exists a CT2 space X with a computable measure µ such
that no universal test exists.

Proof. Let A ⊆ N be a non-computable c.e. set such that 0 ∈ A. Consider the
space X = {0} ∪ N\A with the discrete topology τ . We define a base β of τ as

β = {{n} : n ∈ X}

and a notation ν :⊆ Σ∗ → β of the base β as

ν(i) =

{
{0} if i ∈ A

{i} if i 6∈ A

where i is the binary representation of i.
We show that X = (X, τ, β, ν) is a computable topological space. Clearly,

dom(ν) is computable. We define a c.e. set S ⊆ (dom(ν))3 as follows. If i, j ∈ A,
then (i, j, w) ∈ S ⇐⇒ w = i. If i 6∈ A or j 6∈ A, then (i, j, w) ∈ S ⇐⇒ w =
i = j. It is not difficult to see that S satisfies (1) in Definitoin 2.1.

We show that X is CT2. We define a c.e. set H ⊆ Σ∗ × Σ∗ as

H = {(i, j) : i 6= j}.

We prove that H satisfies the property in the definition of CT′
2. Let (i, j) ∈ H .

If i, j ∈ A, then ν(i) = ν(j) = {0}. If i 6∈ A or j 6∈ A, then ν(i) ∩ ν(j) = ∅
because i 6= j. Let i, j ∈ X such that i 6= j. Then i ∈ ν(i) and j ∈ ν(j).

We define a measure µ as
µ({0}) = 1.

We show that µ is computable. Let a1, . . . , ak ∈ dom(ν). Note that

µ(ν(a1) ∪ . . . ∪ ν(ak)) =

{
1 if aj ∈ A for some j ≤ k

0 otherwise.

Then the measure is uniformly lower semicomputable. Hence µ is computable.
We show that the set of non-ML-random points is N\A. Since µ({0}) = 1,

the natural number 0 is ML-random. For each i 6∈ A, let Un = {i} for all n.
Then {Un} is a sequence of uniformly c.e. open sets with µ(Un) = 0. Hence
{Un} is a ML-test. It follows that the natural number i is not ML-random.

We claim that N\A is open but not c.e. Suppose that N\A is c.e. Then
there exists a computable sequence {an} of natural numbers such that N\A =⋃

n ν(an). If an ∈ A, then {0} = ν(an) ⊆ N\A, which is a contradiction. Hence
an 6∈ A for all n. It follows that

{an : n ∈ N} =
⋃

n

ν(an) = N\A.
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Since the complement of A is c.e. and A is c.e. by the definition, A is computable,
which is a contradiction.

We prove that each ML-random test is not universal. Let {Vn} be a ML-test.
Since µ(V1) ≤ 2−1, 0 6∈ V1. Hence V1 ⊆ N\A. Since N\A is not c.e., we have
V1 ( N\A. Hence {Vn} is not universal.

It should be noted that X constructed above is not SCT3 by Theorem 4.8.
The space X is not even SCT2. Suppose that X is SCT2 and H is in the
definition of SCT2. We define a c.e. set S ⊆ N as

S = {j : (0i1, 0j1) ∈ H and i ∈ A} ∪ {i : (0i1, 0j1) ∈ H and j ∈ A}.

We show that S ⊆ N\A. Consider j ∈ S, i ∈ A and (0i1, 0j1) ∈ H . Then
µ(0i1) = {0} and ν(0i1) ∩ µ(0j1) = ∅. Hence j 6∈ A. It follows that S ⊆ N\A.

We show that S ⊇ N\A. For each i ∈ N\A, there exists (u, v) ∈ H such that
i ∈ ν(u) and 0 ∈ ν(v). Since i 6= 0, u = 0i1. Since 0 ∈ ν(v), v = 0j1 and j ∈ A
for some j. Then i ∈ S.

However S = N\A is impossible, since S is c.e. and N\A is not c.e. Hence
X is not SCT2.

The author does not know whether there exists an SCT2 space with a com-
putable measure on it such that there does not exist a universal ML-test.

5 Complexity randomness

Martin-Löf randomness on Cantor space has a characterization by complexity.
In this section we study whether Martin-Löf randomness on a computable topo-
logical space with a computable measure has a characterization by complexity.

5.1 Definition

On Cantor space with a computable measure µ, a binary sequence Z ∈ 2ω is
not Martin-Löf random iff for all d ∈ N there exists n such that

K(Z � n) < − logµ([[Z � n]])− d (2)

where K is the universal prefix-free Kolmogorov complexity, Z � n is the first
n bits of the sequence Z, log(0) = −∞, [[σ]] = {X ∈ 2ω | σ ≺ X} and ≺ is
the prefix relation. To prove the characterization by complexity, it is important
that the relation (2) is semidecidable, which is based on the fact that µ([[σ]]) is
uniformly computable, more precisely, uniformly right-c.e.

On a computable metric space with a computable measure, Hoyrup and Ro-
jas [11] have given a characterization by complexity of Martin-Löf randomness.
They devide the whole space into cells whose measures are uniformly com-
putable. However we can not generalize it to a computable topological space in
the same manner.
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We wish to have a characterization like this: on a computable topological
space X with a computable measure µ, a point x ∈ X is not Martin-Löf random
iff for all d ∈ N there exists some set A such that

x ∈ A and H(A) < − logµ(A)− d

where H is some kind of complexity. We require the set A to be co-c.e. closed
so that µ(A) is right-c.e. Then the set A can be identified with a computable
ψ−-name p. We use the monotone complexity Km so that H(A) = Km(A) can
be finite.

A monotone machine is a Turing machine, which reads finite strings from
an input tape, operates on work taps and write one-way finite strings or infinite
sequences to an output tape. Then a monotone machine is similar to a Type-2
machine. We write M(σ) ↓ if M reads exactly σ from its input tape and write
some finite string or some infinite sequences to its output tape. LetM(σ) denote
the string or the sequence.

Another way to define a monotone machine is that a c.e. set of pairs (σ, τ)
where σ, τ ∈ 2∗ and for every pair (σ1, τ1), (σ2, τ2) ∈M , σ1 � σ2 implies τ1 � τ2
or τ2 � τ1.

Definition 5.1 (Monotone complexity; Levin [13, 14]). We define the monotone
complexity of τ ∈ 2∗ ∪ 2ω with respect to M to be

KmM (τ) = min{|σ| : τ �M(σ) ↓}

or equivalently

KmM (τ) = min{|σ| : (σ, ρ) ∈M for some ρ � τ}

if τ ∈ 2∗ and
KmM (τ) = sup

n
Km(τ � n)

if τ ∈ 2ω. One can show that there is a universal monotone machine U and we
define Km(τ) = KmU (τ).

The following are well-known results in the theory of algorithmic randomness
[6, 18].

Proposition 5.2. The function Km is monotone, that is, σ � τ implies
Km(σ) ≤ Km(τ) for all σ, τ ∈ 2∗ ∪ 2ω.

Proposition 5.3. A sequence Z ∈ 2ω is computable iff there exists d ∈ N such
that Km(Z) < d.

Theorem 5.4. A sequence Z ∈ 2ω is Martin-Löf random iff there exists d such
that, for all n, Km(Z � n) > n− d.

The following fact is a simple important property of monotone machines.

Proposition 5.5. Let M,N be monotone machines. Then M ◦ N is also a
monotone machine.
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Now we give the definition of complexity randomness. We assume that
Σ = {0, 1} = 2 without loss of generality so that each ψ−-name p of a closed
set is in {0, 1}ω = 2ω. For a closed set A, we define

Km(A) = min
p

{Km(p) | ψ−(p) = A}.

It should be noted that Km(A) is finite iff A is co-c.e. closed, because if A is
not co-c.e. closed, then each ψ−(p) = A implies Km(p) = ∞.

Definition 5.6. Let X = (X, τ, β, ν) be a computable topological space and µ
be a computable measure on it. A point x ∈ X is complexity random if there
exists d ∈ N such that

x ∈ A⇒ Km(A) ≥ − logµ(A) − d

for each closed set A. Here we define log(0) = −∞.

5.2 Independence from the notation

The monotone complexity Km depends on the representation ψ−, which also
depends on the notation ν. However we can replace the notation with an equiv-
alent one.

Definition 5.7 ([33]). The computable topological spaces X1 = (X, τ, β1, ν1)
and X2 = (X, τ, β2, ν2) are equivalent iff ν1 ≤ θ2 and ν2 ≤ θ1.

Theorem 5.8 (robustness [33]). Let X1 = (X, τ, β1, ν1) and X2 = (X, τ, β2, ν2)
be computable topological spaces. Then X1 and X2 are equivalent ⇐⇒ θ1 ≡ θ2.

Proposition 5.9. Let X1 = (X, τ, β1, ν1) and X2 = (X, τ, β2, ν2) be computable
topological spaces. Let Km1 and Km2 be the monotone complexities of closed
sets on X and X′ respectively. If θ2 ≤ θ1, then there exists d ∈ N such that

Km1(A) ≤ Km2(A) + d

for all closed sets A.

Proof. Since θ2 ≤ θ1, there exists a computable function h :⊆ 2ω → 2ω such
that θ2(p) = θ1 ◦h(p) for all p ∈ dom(θ1). Further h can be seen as a monotone
machine, more precisely, there exists a monotone machine N satisfying the
following: for each n and p ∈ dom(θ1), there exists (σ, τ) ∈ N such that σ ≺ p
and h(p) � n ≺ τ . Consider the monotone machine N ◦M . By universality of
M , there exists d such that Km(σ) ≤ KmN◦M (σ) + d for all σ ∈ 2∗ ∪ 2ω.

For each co-c.e. closed set A, let p ∈ 2ω be a computable sequence such that
Km2(A) = Km(p) and ψ−

2 (p) = A. Further let σ ∈ 2∗ such that Km(p) = |σ|
and p �M(σ). Then h(p) � N ◦M(σ). Hence KmN◦M (h(p)) ≤ |σ|. It follows
that Km(σ) ≤ |σ|+ d and

Km1(A) ≤ |σ|+ d = Km(p) + d = Km2(A) + d.

Finally note that Km1(A) = Km2(A) = ∞ if A is not co-c.e. closed.
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Corollary 5.10. Let X1 = (X, τ, β1, ν1) and X2 = (X, τ, β2, ν2) be equiva-
lent computable topological spaces and µ be a computable measure on it. Then
complexity randomness on the spaces coincide.

It should be noted that the computability of a measure µ does not depend
on the notation.

5.3 Some natural properties

Here we rephrase the definition of complexity randomness in some forms and
show that the set of complexity random points has measure 1.

In the definition of complexity randomness we can require the set A to be
co-c.e. closed.

Proposition 5.11. A point x is complexity random iff there exists d ∈ N such
that

x ∈ ψ−(p) ⇒ Km(p) ≥ − logµ(ψ−(p))− d

for each computable sequence p ∈ dom(ψ−).

Proof. The “only if” direction is immediate.
Suppose that x is not complexity random. Then for each d ∈ N, there exists

a closed set A such that x ∈ A and Km(A) < − logµ(A) − d. Then Km(A) is
finite. Hence A is co-c.e. closed. Let p ∈ 2ω be a sequence such that Km(A) =
Km(p) and ψ−(p) = A. Then x ∈ ψ−(p) and Km(p) < − logµ(ψ−(p))− d.

Further we can require the set A to be the complement of the finite union
of base sets. Recall that νfs is a notation of finite unions of base sets. For
simplicity, we define F :⊆ 2∗ → A be the set function as

F (u) = Fν(u) = X\
⋃
νfs(u).

Proposition 5.12. A point x is complexity random iff there exists d ∈ N such
that

x ∈ F (u) ⇒ Km(u) ≥ − logµ(F (u))− d

for each u ∈ dom(νfs).

Proof. The “only if” direction is immediate.
Suppose that x is not complexity random. Then for each d ∈ N there

exists a computable sequence p ∈ 2ω such that x ∈ ψ−(p) and Km(p) <
− logµ(ψ−(p))− 2d. Then there exists u ∈ dom(νfs) such that u ≺ p and

µ(F (u)) ≤ 2d · µ(ψ−(p)).

Since u ≺ p, we have
⋃
νfs(u) ⊆ θ(p) and x 6∈

⋃
νfs(u). Again by u ≺ p, we

have Km(u) ≤ Km(p). Hence Km(u) ≤ Km(p) < − logµ(F (u))− d.

This proposition says that complexity randomness has always universality.

19



Proposition 5.13. The set of complexity random points has measure 1.

Proof. Let k ∈ N. We define a c.e. set U = Uk as

U = {(σ, u) : |σ| < − logµ(F (u))− k, u ∈ dom(νfs), u � v and (σ, v) ∈M}.

Note that the set of non-complex random sets is
⋂

k

⋃
〈p,u〉∈U F (u).

We define sets V and W as

V = {u : (σ, u) ∈ U for some σ}, W = {u : v 6∈ V for all v ≺ u}.

For each u ∈ W ⊆ V , let σu be such that (σu, u) ∈ U .
We claim that

⋃
u∈W F (u) =

⋃
(σ,u)∈U F (u). The inclusion ⊆ is immediate.

We show the other inclusion. Suppose that x ∈ F (u) for some (σ, u) ∈ U . Then
u ∈ V . If u ∈ W then x ∈ F (u) for this u ∈ W . If u 6∈ W , there exists v such
that v ≺ u and v ∈ W . Then x ∈ F (u) ⊆ F (v).

Since W is prefix-free and M is monotone, the set {σu : u ∈ W} is prefix-
free. Then

2kµ(
⋃

(σ,u)∈U

F (u)) ≤
∑

u∈W

2kµ(F (u)) ≤
∑

u∈W

2−|pu| ≤ 1.

Hence the set
⋂

k

⋃
(σ,u)∈Uk

F (u) has measre 0.

5.4 K-complexity randomness

Proposition 5.12 says that complexity randomness has a characterization by
Km(u) where u is a string and not a sequence. Then we also consider a similar
definition.

A prefix-free machine is a partical computable function whose domain is
prefix-free. There exists a universal prefix-free machine U :⊆ 2∗ → 2∗ and
define

K(τ) = min{|σ| : U(σ) = τ}.

The following is a basic tool to study complexity K. A KC set is a c.e. set
W = {〈di, τi〉 : di ∈ N, τi ∈ 2∗}i such that

∑
i 2

−di ≤ 1.

Theorem 5.14 (KC Theorem; Levin [13], Schnorr [21], Chaitin [4]). For a KC
set {di, τi}i, there ix a prefix-free machine M and strings σi of length di such
that M(σi) = τi for all i and dom(M) = {σi : i ∈ N}.

Definition 5.15. A point x is K-complexity random if there exists d ∈ N such
that

x ∈ F (u) ⇒ K(u) ≥ − logµ(F (u))− d

for each u ∈ dom(νfs).

The notion of K-complexity randomness does not depend on the notation
neither.
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Proposition 5.16. Let X1 = (X, τ, β1, ν1) and X2 = (X, τ, β2, ν2) be equivalent
computable topological spaces. Then K-complexity randomness on X1 and K-
complexity randomness on X2 coincide.

Proof. Suppose ν2 ≤ θ1. Let Fi = Fνi for i = 1, 2.
We define a partial computable function hk :⊆ 2∗ → 2∗ as follows. For each

k ∈ N and u ∈ 2∗, search v such that

νfs1 (v) ⊆ ν2(u) and K(u) < − logµ(F1(v)) − 2k.

If found, let hk(u) = v.
We define a KC set L as

L = {〈|σ|+ k + 1, hk(U(σ))〉 : hk(U(σ)) ↓}

where U is the universal prefix-free machine. Then
∑

〈n,v〉∈L

2−n ≤
∑

σ∈dom(U)

2−|σ|−k−1 ≤ 1.

Then there exists d ∈ N such that

K(hk(u)) ≤ K(u) + k + d+ 1

for each u ∈ dom(hk).
Suppose that x is not K-complexity random on X2. For each k ∈ N, there

exists u ∈ dom(νfs2 ) such that x ∈ F2(u) and K(u) < − logµ(F2(u)) − 2k −
1. Then there exists v ∈ dom(νfs1 ) such that νfs1 (v) ⊆ ν2(u) and µ(F1(v)) ≤
2µ(F2(u)). It follows that F1(v) ⊇ F2(u) 3 x and

K(u) < − logµ(F2(u))− 2k − 1 ≤ − logµ(F1(v)) − 2k.

Hence hk(u) is defined. It follows that

K(hk(u)) ≤ K(u) + k + d+ 1 < − logµ(F1(hk(u)))− k + d+ 1.

Hence x is not K-complexity random on X1.

Since Km(σ) ≤ K(σ)+ d for all σ ∈ 2∗ for some d ∈ N, complexity random-
ness implies K-complexity randomness. Hence the following is immediate from
Proposition 5.13. Here we also give an easy direct proof.

Proposition 5.17. The set of K-complexity random points has measure 1.

Proof. For each k, we define a set An as

An = {u : K(u) < − logµ(F (u))− k}.

For each u ∈ Ak, we have 2kµ(F (u)) ≤ 2−K(u). Then

µ(
⋃

u∈Ak

F (u)) ≤
∑

u∈An

µ(F (u)) ≤ 2−k
∑

u∈An

2−K(u) ≤ 2−k

for each k. It follows that
⋂

n

⋃
u∈Ak

F (u) has measure 0. Hence the set of
non-K-complexity random points has measure 0.
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5.5 When they coincide

Complexity randomness and K-complexity randomness are randomness notions
that can be defined on any computable topological space with any computable
measure. However Martin-Löf randomness does not coincide with each of them
in general.

Example 5.18. Consider the lower unit interval I< in Example 2.3 and the mea-
sure µ such that µ((q, 1]) = 1 − q where q ∈ Q ∩ [0, 1]. Then µ is computable.
The set of non-ML-random points is {1}. In contrast the set of non-complexity
random points is {0}. The set of non-K-complexity random points is also {0}.

We show that SCT3 is a sufficient condition for the coincidence.

Theorem 5.19. Let X be an SCT3 space and µ be a computable measure on
it. Then the following are equivalent for a point x ∈ X:

(i) x is ML-random.

(ii) x is complexity random.

(iii) x is K-complexity random.

The implication (ii)⇒(iii) is immediate.

Proof of (i)⇒(ii) of Theorem 5.19. By Lemma 4.9, there exists a double se-
quence {Uu

n} of uniformly c.e. open sets and a double sequence {V u
n } of uni-

formly co-c.e. closed sets such that Uu
n ↑

⋃
νfs(u) and V u

n ↑
⋃
νfs(u) for all

u ∈ dom(νfs) and Uu
n ⊆ V u

n ⊆
⋃
νfs(u) for all n ∈ N and u ∈ dom(νfs). Let

k ∈ N. We define a c.e. set Sk = S of strings as

S = {(σ, u, n) : |σ| < − logµ(X\V u
n )− k, u ∈ dom(νfs), u � v, (σ, v) ∈ M}

where M is the universal monotone machine.
Let Wk =

⋃
(σ,u,n)∈S(X\V u

n ). We will prove that µ(Wk) ≤ 2−k. The ar-
gument is similar to the proof of Proposition 5.13. We define sets A and B
as

A = {u : (σ, u, n) ∈ S for some σ, n}, B = {u : v 6∈ A for all v ≺ u}.

For each u ∈ B, let nu be the smallest n such that (σ, u, n) ∈ S for some σ and
let σu be such that (σu, u, nu) ∈ S.

We claim that ⋃

u∈W

(X\V u
nu

) =
⋃

(σ,u,n)∈S

(X\V u
n ).

The inclusion ⊆ is immediate. We show the other direction. Suppose that
x ∈ X\V u

n for some (σ, u, n) ∈ S. Then u ∈ A. If u ∈ B, then V u
nu

⊆ V u
n and

x ∈ X\V u
nu

. If u 6∈ B, then there exists v such that v ≺ u and v ∈ B. By the
construction in Lemma 4.9, we can assume

V v
n ⊆ V u

n for each v ≺ u.
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It follows that V v
nv

⊆ V v
n ⊆ V u

n and x ∈ X\V v
nv
.

Since B is prefix-free andM is monotone, the set {σu : u ∈ B} is prefix-free.
Then

µ(
⋃

(σ,u,n)∈S

(X\V u
n )) =µ(

⋃

u∈W

(X\V u
nu

))

≤
∑

u∈W

µ(X\V u
nu

) ≤
∑

u∈W

2−|σu|−k ≤ 2−k.

For each k, let Tk =
⋃

(p,u,n)∈Sk
(X\V u

n ). Then {Tk} is ML-test.
Suppose that x is not complexity random. By Proposition 5.12, for each k,

there exists u0 ∈ dom(νfs) such that x ∈ F (u0) andKm(u0) < − logµ(F (u0))−
k. Let σ0 be such that Km(u0) = |σ0|, v � u0 and (σ0, v) ∈ M for some v.
Since |σ0| < − logµ(F (u0))− k and limn µ(X\V u0

n ) = µ(F (u0)), there exists n0

such that |σ0| < − logµ(X\V u0

n0
)− k. Then (σ0, u0, n0) ∈ S. Hence

x ∈ F (u0) ⊆ X\V u0

n0
⊆ Tk.

Since k is arbitrary, x is not ML-random.

Before giving a proof of the remaining implication, we show a lemma.

Lemma 5.20. Let X be an SCT3 space and µ be a computable measure on it.
For each c.e. open set W and n ∈ N, one can compute a computable sequence
{Vm} of the finite unions of base sets and a computable sequence {Cm} of the
complements of the finite unions of base sets such that

(i) W ⊆
⋃

m Cm,

(ii) Vm ⊆ Cm, µ(Cm)− µ(Vm) ≤ 2−n−m−1 and

(iii)
∑

m µ(Cm) ≤ 2µ(W ) + 2−n for each n.

Proof. By Lemma 4.9, there exists a sequence {Uk} oe uniformly c.e. open sets
and a sequence {Ak} of uniformly co-c.e. closed sets such that Uk ↑W , Ak ↑W
and Uk ⊆ Ak ⊆W . Further we assume that Uk is the finite union of base sets.

We claim that, for each m, one can compute k = k(m) such that µ(Ak) −
µ(Uk) < 2−n−m−3. Note that the real µ(Uk) is approximated from below and
µ(Ak) is approximated from above. Furthere µ(W ) − µ(Uk) → 0 as k → ∞,
we have µ(Ak) − µ(Uk) → 0. Hence we can compute such k. We assume that
k(m) < k(m+ 1) for all m.

We define Bk = Bk(m) for each m as follows. Since Ak is co-c.e. closed set
and µ(Ak) − µ(Uk) < 2−n−m−3, there exists Bk such that Ak ⊆ Bk, Bk is the
complement of the finite union of base sets and µ(Bk)− µ(Uk) < 2−n−m−3. It
should be noted that Bk is defined only when k = k(m) for some m.

We define a computable sequence {Vm} of the finite unions of base sets and
a computable sequence {Cm} of the complements of the finite unions of base
sets as follows. Let V0 = Uk(0), C0 = Bk(0),

Vm = Uk(m)\Bk(m−1) and Cm = Bk(m)\Uk(m−1)
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for all m ≥ 1. It should be noted that X\Cm = (X\Bk(m)) ∪ Uk(m−1) is the
finite union of base sets for each m.

We show W ⊆
⋃

m Cm. Since Uk ↑W , it suffices to show that

Uk(m) ⊆ C0 ∪ · · · ∪ Cm (3)

by induction over m. The case of m = 0 is true by the definition. Suppose that
the inclusion (3) is true for m− 1. Then

Uk(m) ⊆ Ak(m) ⊆ Bk(m) ⊆ Cm ∪ Uk(m−1) ⊆ C0 ∪ · · · ∪ Cm.

Hence the inclusion (3) is true for m.
We prove Vm ⊆ Cm for all m. Suppose that x ∈ Vm Then x ∈ Uk(m) and

x 6∈ Bk(m−1). Since Uk(m) ⊆ Bk(m), x ∈ Bk(m) and X 6∈ Uk(m−1). Hence
x ∈ Cm

Next we show µ(Cm)−µ(Vm) ≤ 2−n−m−1. Since Uk(m−1) ⊆ Uk(m) ⊆ Bk(m),
we have

µ(Cm) = µ(Bk(m)\Uk(m−1)) = µ(Bk(m))− µ(Uk(m−1)).

We also have

µ(Vm) =µ(Uk(m)\Bk(m−1)) = µ(Uk(m))− µ(Uk(m) ∩ Bk(m−1))

≥µ(Uk(m))− µ(Bk(m−1)).

It follows that

µ(Cm)− µ(Vm) ≤µ(Bk(m))− µ(Uk(m−1))− µ(Uk(m)) + µ(Bk(m−1))

≤2−n−m−3 + 2−n−(m−1)−3 < 2−n−m−1.

Finally we prove
∑

m µ(Bm) ≤ 2µ(W ) + 2−n. For m ≥ 1,

Cm = Bk(m)\Uk(m−1) = (Bk(m)\Ak(m))] (Ak(m)\Ak(m−1))] (Ak(m−1)\Uk(m−1)

and

µ(Cm) <2−n−m−3 + µ(Ak(m)\Ak(m−1)) + 2−n−(m−1)−3

<µ(Ak(m)\Ak(m−1)) + 2−n−m−1

Then

∑

m

µ(Cm) ≤ µ(Bk(0)) +
∑

m

µ(Ak(m)\Ak(m−1)) +
∑

m

2−n−m−1.

The first term is less than or equal to µ(W ). The second term is also less than
or equal to µ(W ). The third term is equal to 2−n.
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Proof of (iii)⇒(i) of Theorem 5.19. Let {Wn} be a ML-test. By Lemma 5.20,
there exists a computable suquence {V〈n,m〉} of the finite unions of base sets
and a computable sequence {C〈n,m〉} of the complements of the finite unions of
base sets such that

W2n+6 ⊆
⋃

m

C〈n,m〉, V〈n,m〉 ⊆ C〈n,m〉,

µ(C〈n,m〉)− µ(V〈n,m〉) ≤ 2−2n−5−m−1 = 2−2n−m−6,
∑

m

µ(C〈n,m〉) ≤ 2µ(W2n+6) + 2−2n−5 ≤ 2−2n−5 + 2−2n−5 = 2−2n−4

for each n.
We construct a KC set as follows. Let

L1 = {〈n+m+ 3, 〈n,m〉〉 : n,m ∈ N}.

Note that
∑

n,m 2−n−m−3 = 1/2. We construct another KC set L2. Since
V〈n,m〉 ⊆ C〈n,m〉, we have − logµ(C〈n,m〉) ≤ − logµ(V〈n,m〉). Since C〈n,m〉 is c.e.
open and V〈n,m〉 is co-c.e. closed,− logµ(V〈n,m〉) is approximated from above and
− logµ(C〈n,m〉) is approximated from below. Then the relation− logµ(V〈n,m〉)+
logµ(C〈n,m〉) < 1 is semi-decidable. If the relation holds, there exists an integer
b such that b−1 < − logµ(C〈n,m〉) ≤ − logµ(V〈n,m〉) < b+1, which is equivalent
to

2−b−1 < µ(V〈n,m〉) ≤ µ(C〈n,m〉) < 2−b+1.

Note that such b can be found effectively. Let b(n,m) be the integer b if found.
Let

L2 = {〈b(n,m)− n− 1, 〈n,m〉〉 : b(n,m) is defined}.

Then
∑

b(n,m)↓

2−b(n,m)+n+1 ≤
∑

n,m

2n+2µ(C〈n,m〉) ≤
∑

n

2n+2 · 2−2n−4 = 1/2.

Hence L1 ∪ L2 is a KC set.
Let f :⊆ 2∗ → N be the prefix-free machine constructed from L1∪L2 by KC

theorem. Recall that C〈n,m〉 is the comlement of the finite union of base sets.
Then there exists a computable sequence {u〈n,m〉} such that F (u〈n,m〉) = C〈n,m〉.
Let h(σ) = uf(σ). Then h is a prefix-free machine.

Suppose that x ∈ X is not ML-random. Since x ∈
⋂

nWn and W2n+6 ⊆⋃
m C〈n,m〉, there exists m such that x ∈ C〈n,m〉 = F (u〈n,m〉) for each n.
Suppose that b(n,m) is defined. Then there exists σ ∈ 2∗ such that |σ| =

b(n,m)− n− 1 < − logµ(C〈n,m〉)− n, which implies

Kh(u〈n,m〉) ≤ − logµ(F (u〈n,m〉))− n.

Suppose that b(n,m) is not defined and µ(C〈n,m〉) ≤ 2−2n−m−4. Then
− logµ(C〈n,m〉) − n − 1 ≥ n + m + 3. Note that there exists σ ∈ 2∗ such
that |σ| = n+m+ 3 and h(σ) = u〈n,m〉. Then

Kh(u〈n,m〉) ≤ n+m+ 3 ≤ − logµ(F (u〈n,m〉))− n− 1.

25



Suppose that b(n,m) is not defined and µ(C〈n,m〉) > 2−2n−m−4. Then

µ(V〈n,m〉) > µ(C〈n,m〉)− 2−2n−m−6 ≥ µ(C〈n,m〉)/2.

It follows that

− logµ(C〈n,m〉) ≤ µ(V〈n,m〉) < − logµ(C〈n,m〉) + 1.

This is a contradiction.
Hence x is not K-complexity random.

5.6 When they do not coincide

The condition of SCT3 is a sufficient condition for the coincidnece between ML-
randomness and complexity randomness. We prove that we can not weaken the
condition to SCT2. To prove it, we use the following computable topological
space.

Consider the unit interval I = ([0, 1], τ, β, ν) in Example 2.3. Let a be a real
in [0, 1]. We write Ia = [0, 1]\{a}. Let

νa(〈u, v〉) =

{
ν(v) if u = λ and v ∈ dom(ν),

ν(v) ∩ Ia if u 6= λ and v ∈ dom(ν),

where λ is the empty string. Let βa = {νa(u) : u ∈ dom(νa)}. Since Ia is open
on I, the topology generated by the base βa coincides with τ .

Proposition 5.21. The 4-tuple Ia = ([0, 1], τ, βa, νa) is SCT2. Further the
following are equivalent.

(i) Ia is SCT3.

(ii) a is δa-computable.

(iii) a is δ-computable.

Note that Ia is T3 for all a ∈ [0, 1].

Proof. We prove that Ia is a computable topological space. Clearly Ia is an
effective topological space clearly. Note that dom(νa) is computable. Let S ⊆
(Σ∗)3 be a c.e. set such that

ν(u) ∩ ν(v) =
⋃

{ν(w) : (u, v, w) ∈ S}

for all u, v ∈ dom(ν). Let Sa ⊆ (Σ∗)3 be the c.e. set such that

(〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) ∈ Sa ⇐⇒ (u2, v2, w2) ∈ S ∧ w1 = λ

if u1 = v1 = λ and

(〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) ∈ Sa ⇐⇒ (u2, v2, w2) ∈ S ∧ w1 6= λ
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if u1 6= λ or v1 6= λ. Then Sa satisfies (1) in Definition 2.1.
Since I is SCT2 and β ⊆ βa, Ia is also SCT2.

(ii)⇒(iii) Suppose that the real a is δa-computable on Ia. Then the set {〈u, v〉 ∈
Σ∗ : a ∈ νa(〈u, v〉)} is c.e. Since a 6∈ Ia, we have

a ∈ νa(〈u, v〉) ⇐⇒ u = λ and a ∈ ν(v)

Hence {v ∈ Σ∗ : a ∈ ν(v)} is c.e. It follows that a is δ-computable.

(iii)⇒(ii) This is proved by tracking back the proof of (ii)⇒(iii).

(iii)⇒(i) Consider a base setW that has the formW = (p, q)∩Ia where p, q ∈ Q.
Since a is δ-computable, it is decidable whether a ∈ (p, q) or not. If not,
W = ((p, a) ∩ [0, 1]) ∪ ((a, q) ∩ [0, 1]. Now it is easy to construct R and r in
Definition 2.5.

(i)⇒(ii) Note that Ia is a base set. By Lemma 4.9, one can construct a com-
putable sequence {Un} of finite unions of base sets and a computable sequence
{Vn} of closed sets such that Un ↑ Ia, Vn ↑ Ia and Un ⊆ Vn ⊆ Ia for all n. Since
Ia is not closed and Vn is closed, Un ( Ia.

Consider the diameter of a set A ⊆ [0, 1] as

D(A) = sup{|x− y| : x, y ∈ A}.

Since Un is a finite union of base sets, D([0, 1]\Un) is computable. Since Un (

Ia, [0, 1]\Un has at least two elements and D([0, 1]\Un) > 0. Since Un ↑ Ia,
D([0, 1]\Un) → 0 as n→ 0. It follows that a is a δ-computable real.

Proposition 5.22. There exists an SCT2 and T3 space with a computable mea-
sure on which ML-randomness and complexity randomness does not coincide.

Proof. Let a be a ML-random real on I. We prove that a is ML-random but
not complexity random on Ia with the Lebesgue measure µ.

The co-c.e. closed set {a} has measure 0 and a ∈ {a}. Hence a is not
complexity random.

Suppose a is not ML-random on Ia. Then there exists a ML-test {Un} with
a ∈

⋂
n Un. Since {Un} is uniformly c.e. open, there exist computable sequences

{uni } and {vni } such that

Un =
⋃

{νa(〈u
n
i , v

n
i 〉) : i ∈ N}.

Let
Vn =

⋃
{νa(〈u

n
i , v

n
i 〉) : uni = λ and i ∈ N}.

Then Vn ⊆ Un. Since a ∈
⋂

n Un, there exists i such that a ∈ νa(〈uni , v
n
i 〉) for

each n. If uni 6= λ, a ∈ ν(vni ) ∩ Ia, which is a contradiction. Hence the i should
satisfy uni = λ for each n. It follows that a ∈

⋂
n Vn.

However {Vn} is a ML-test on I. Hence this contradicts to the fact that a is
ML-random on I.
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Discussion

First we studied computability of measures on a computable topological space.
We generalize the result by Gács to that the space of measres on a computable
topological space is another computable topological space. Then computability
of points on the space concindes with computability defined in Schröder [23].
Hence this is the right definition of computability of measures.

Next we studied Martin-Löf randomness on a computable topological space
with a computable measure. We showed that there is not a universal test in
general, and ML-randomness and complexity randomness do not coincide in
general. A sufficient condition is SCT3. However we can not weaken the con-
dition of SCT3 to CT2 for the existence of a universal test and to SCT2 for
the coincidence between ML-randomness and complexity randomness. Hence a
computable metric space is a rather general space on which ML-randomness is a
natural notion and may be the best to which we can generalize ML-randomness
as a natural randomness notion.
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[16] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its
applications. Graduate Texts in Computer Science. Springer-Verlag, New
York, third edition edition, 2009.
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